1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

Alpha

This feature is in a pre-release state and might change or have limited support. For more information, see the
product launch stages (/products/#product-launch-stages).

For information about access to this release, see the access request page (http://www.google.com).

This tutorial shows how to scale up training your model from a single Cloud TPU (v2-8 or v3-8)
to a Cloud TPU Pod. Cloud TPUs accelerators in a TPU Pod are connected by a very high
bandwidth interconnects making them great at scaling up training jobs. For more information
about the Cloud TPU Pods offerings refer to the Cloud TPU product page
(https://cloud.google.com/tpu/) or to this Cloud TPU presentation

(https://storage.googleapis.com/nexttpu/index.html).

The following diagram provides an overview of the distributed cluster setup and shows how
training happens. In the single device setup, a single VM (client worker = CW) feeds a single
TPU worker (service worker = SW). Similarly, in distributed training a cluster of VMs/CWs and
also a corresponding TPU Pod slice (cluster of SWs) and each of the CWs feeds a single SW.
The input pipeline runs on the CW and all the model training happens on the SW.

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/ 1/9


https://cloud.google.com/products/#product-launch-stages
http://www.google.com/
https://cloud.google.com/tpu/
https://storage.googleapis.com/nexttpu/index.html

1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

Distributed PyTorch Training (ex. europe-westd-a)

Cluster Setup SW = Service Worker
Legend . _
————————— Training Job CW = Client Worker
) Google Cloud Platform
Create TPU Node
| (ex. w3-32)
Craate Image ﬁ
D_ @ from WM disk e Emanes
- CW Disk
User P Cloud TPU

Create GCE 9"

Instance Template
With WM disk

W Gradient SW

Create GCE Peered Reduction
- Gmup @ @ _@ @
D S —
cwW cw E B
4 i
1

e Set up a Compute Engine Instance Group and Cloud TPU Pod for training with
PyTorch/XLA

e Run PyTorch/XLA training on a Cloud TPU Pod

Warning: This model uses a third-party dataset. Google provides no representation, warranty, or other

guarantees about the validity, or any other aspects of this dataset.

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/



1/25/2020

Training Py Torch models on Cloud TPU Pods | Google Cloud

Before starting distributed training on Cloud TPU Pods, verify that your model trains on a single
v2-8 or v3-8 Cloud TPU device. If your model has significant performance problems on a single
device, refer to the best practices
(https://github.com/pytorch/xla/blob/master/API_GUIDE.md#performance-caveats) and
troubleshooting (https:/github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md) guides.

Once your your single TPU device is successfully training, perform the following steps to set up
and train on a Cloud TPU Pod:

1. [Optional] Capture a VM disk image into a VM image. (#capture-vm-disk)

2. Create an Instance template from a VM image. (#create-instance-template)

3. Create an Instance Group from your Instance template. (#create-instance-group)

4. SSH into your Compute Engine VM (#ssh)

5. Verify firewall rules to allow inter-VM communication. (#verify-firewall).

6. Create a Cloud TPU Pod. (#create-tpu-pod)

7. Run distributed training_on the Pod. (#start-distributed-training)

8. Clean up. (#clean-up)

You can use the disk image from the VM you used to train the single TPU (that already has the

dataset, packages installed, etc.) to create a VM Image
(https://cloud.google.com/compute/docs/images/create-delete-deprecate-private-
images#prepare_instance_for_image)

that can be used for Pod training. You can skip this step if you do not require any additional
packages or datasets for training and can just use a standard PyTorch/XLA image.

Create a default instance template

(https://cloud.google.com/compute/docs/instance-templates/create-instance-
templates#creating_a_new_instance_template)

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/

3/9


https://github.com/pytorch/xla/blob/master/API_GUIDE.md#performance-caveats
https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
https://cloud.google.com/compute/docs/images/create-delete-deprecate-private-images#prepare_instance_for_image
https://cloud.google.com/compute/docs/instance-templates/create-instance-templates#creating_a_new_instance_template

1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

. When you are creating an instance template, you can use the VM Image you created in the
above step OR you can use the public PyTorch/XLA image Google provides by following these
instructions:

1. On the create an instance template page, click the "Change" button under the "Boot Disk"
Section.

2. If you captured a VM disk image, click on the "Custom images" tab and select the image
you captured. If you did not capture a VM disk image, select the public PyTorch/XLA
image from the "OS images" pull down menu.

3. Make sure that:

a. Under Machine type, select n1-standard-16 for this example that uses ResNet-50
training. For your own model choose whatever VM size you used to train on a v3-
8/v2-8.

b. Under "Identity and APl access" — "Access Scopes", select "Allow full access to all
Cloud APIs".

4. Click "Select" at the bottom to create your Instance template.

From the Google Cloud Console (https://console.cloud.google.com/), select Compute Engine >
instance groups to access the Create an instance group form. When filling out the form,
specify the following parameters for the configuration:

1. Under "Name", specify a name for your Instance Group.
2. Under "Location" section make sure to select "Single Zone".

3. Under "Region" and "Zone" sections make sure to select the same zone that the TPU Pod
will be created in.

4. Under "Instance template” select the template you created in the previous step.

5. Under "Autoscaling mode" select "Off". If you see an "Autoscaling mode" dropdown, select
"Don't configure autoscaling".

6. Under "Number of Instances": You will need N number instances where N equals the total
number of cores you are using divided by 8, since each VM instance (CW) feeds 8 TPU

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/

4/9


https://console.cloud.google.com/

1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

cores. In this example, N equals 4, so you need 4 Instances.
7. Under "Health check" select "No health check".

8. Click "Select" at the bottom to create your Instance Group.

After creating your Instance Group, SSH into your Compute Engine VM to continue these
instructions.

1. From the Google Cloud Console (https://console.cloud.google.com/) select Compute Engine >

instance groups and click on the Instance group you just created. This opens a window
that displays all of the Instances in your Instance Group.

2. At the end of the description line for one of your Instances, click the SSH button. This
brings up a VM session window. Run each command that begins with (vm)$ in your VM
session window.

Verify that your Compute VMs can communicate with each other on port 8477 by checking the
firewall rules (https:/cloud.google.com/filestore/docs/configuring-firewall) for your project OR by
running the nmap command from your Compute Engine VM.

1. Run the nmap command. The variable instance-ID is one of the instances from your
Instance Group. For example, instance-group-1-g0h2.

As long as the STATE field does not say filtered the firewall rules are set up correctly.

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/

5/9


https://console.cloud.google.com/
https://cloud.google.com/filestore/docs/configuring-firewall

1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

Go to the Google Cloud Console (https://console.cloud.google.com/) and select Compute Engine >
TPUs. This brings up the page where you can create a TPU node and specify the following
parameters:

1. Under "Name", specify a name for your TPU Pod.

2. Under "Zone" specify the zone (/tpu/docs/types-zones) to use for your Cloud TPU. Make
sure it is in the same zone as your Instance Group.

3. Under "TPU type’, select the Cloud TPU type. (/tpu/docs/types-zones).

4. Under "TPU software version" select the latest stable release (pytorch-6.X), for example
pytorch-0.5.

5. Use the default network.

6. Set the IP address range (/tpu/docs/internal-ip-blocks). For example, 10.240.0.0.

Note: this example assumes you are using a conda environment for distributed training. Also, this example
turns on XLA_USE_BF16=1 at training time, similarly you can use the --env variable to list any other

environment variables you want to have distributed.

1. From your VM session window, export the Cloud TPU name and activate the conda
environment.

2. Run the training script:

* Note: The conda environment should correspond to the TPU software version. TPU software

pytorch-0.5 corresponds to conda environment torch-xla-0.5 and TPU software pytorch-

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/ 6/9


https://console.cloud.google.com/
https://cloud.google.com/tpu/docs/types-zones
https://cloud.google.com/tpu/docs/types-zones
https://cloud.google.com/tpu/docs/internal-ip-blocks

1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

nightly corresponds to conda environment torch-xla-nightly.

Once you run the above command you should see output similar to the following (note this is
using --fake_data). The training takes about 1/2 hour on a v3-32 TPU Pod.

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/ 7/9



1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/ 8/9



1/25/2020 Training Py Torch models on Cloud TPU Pods | Google Cloud

Exit from the Compute Engine VM and delete:

1. The Instance Group you created under Compute Engine > Instance Groups

2. The TPU Pod under Compute Engine > TPUs.

Try the PyTorch colabs:

e Training MNIST on TPUs

(https://colab.sandbox.google.com/github/pytorch/xla/blob/master/contrib/colab/mnist-training-
xrt-1-15.ipynb)

e Training ResNet18 on TPUs with Cifar10 dataset

(https://colab.sandbox.google.com/github/pytorch/xla/blob/master/contrib/colab/resnet18-
training-xrt-1-15.ipynb)

¢ Inference with Pretrained ResNet50 Model

(https://colab.sandbox.google.com/github/pytorch/xla/blob/master/contrib/colab/resnet50-
inference-xrt-1-15.ipynb)

https://cloud.google.com/tpu/docs/tutorials/pytorch-pod/

9/9


https://colab.sandbox.google.com/github/pytorch/xla/blob/master/contrib/colab/mnist-training-xrt-1-15.ipynb
https://colab.sandbox.google.com/github/pytorch/xla/blob/master/contrib/colab/resnet18-training-xrt-1-15.ipynb
https://colab.sandbox.google.com/github/pytorch/xla/blob/master/contrib/colab/resnet50-inference-xrt-1-15.ipynb

