
1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 1/12

AI & Machine Learning Products

Cloud TPU Guides

This document describes an implementation of the RetinaNet object detection model. The
code is available on GitHub
 (https://github.com/tensor�ow/tpu/tree/master/models/o�cial/detection).

The instructions below assume you are already familiar with running a model on Cloud TPU.
If you are new to Cloud TPU, you can refer to the Quickstart
 (https://cloud.google.com/tpu/docs/quickstart) for a basic introduction.

If you plan to train on a TPU Pod slice, review Training on TPU Pods
 (https://cloud.google.com/tpu/docs/training-on-tpu-pods) to understand parameter changes
required for Pod slices.

Warning: This tutorial uses a third-party dataset. Google provides no representation, warranty, or other

guarantees about the validity, or any other aspects of, this dataset.

Objectives

Create a Cloud Storage bucket to hold your dataset and model output

Prepare the COCO dataset

Set up a Compute Engine VM and Cloud TPU node for training and evaluation

Run training and evaluation on a single Cloud TPU or a Cloud TPU Pod

Costs

This tutorial uses billable components of Google Cloud, including:

Compute Engine

Cloud TPU

Cloud Storage

 (https://cloud.google.com/products/machine-learning/)

 (https://cloud.google.com/tpu/)

Training RetinaNet on Cloud TPU

https://cloud.google.com/products/machine-learning/
https://cloud.google.com/tpu/
https://cloud.google.com/tpu/docs/
https://github.com/tensorflow/tpu/tree/master/models/official/detection
https://cloud.google.com/tpu/docs/quickstart
https://cloud.google.com/tpu/docs/training-on-tpu-pods

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 2/12

Use the pricing calculator (https://cloud.google.com/products/calculator/) to generate a cost
estimate based on your projected usage. New Google Cloud users might be eligible for a free
trial (https://cloud.google.com/free/).

Before you begin

This section provides information on setting up Cloud Storage storage and a Compute Engine
VM.

Important: Set up your Compute Engine VM, your Cloud TPU node and your Cloud Storage bucket in the same

region/zone to reduce network latency and network costs.

1. Open a Cloud Shell window.

OPEN CLOUD SHELL (HTTPS://CONSOLE.CLOUD.GOOGLE.COM/?CLOUDSHELL=TRUE)

2. Create a variable for your project's name.

3. Con�gure gcloud command-line tool to use the project where you want to create Cloud
TPU.

4. Create a Cloud Storage bucket using the following command:

Note: In the following command, replace your-bucket-name with the name you want to assign to your

bucket.

This Cloud Storage bucket stores the data you use to train your model and the training
results.

5. Launch a Compute Engine VM using the ctpu up command.

export PROJECT_NAME=your-project_name  

gcloud config set project ${PROJECT_NAME}  

gsutil mb -p ${PROJECT_NAME} -c standard -l europe-west4 -b on gs://your-bucket 

$ ctpu up --vm-only --disk-size-gb=300 --machine-type=n1-standard-8 --zone=eur 

https://cloud.google.com/products/calculator/
https://cloud.google.com/free/
https://console.cloud.google.com/?cloudshell=true

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 3/12

Note: If you have more than one project, you must specify the project name. If --name is not speci�ed,

it defaults to your username.

6. The con�guration you speci�ed appears. Enter y to approve or n to cancel.

7. When the ctpu up command has �nished executing, verify that your shell prompt has
changed from username@project to username@tpuname. This change shows that you are
now logged into your Compute Engine VM.

If you are not logged into the Compute Engine VM, you can do so by running the following
command:

Note: The �rst time you run ctpu up on a project it takes several minutes to perform startup tasks

such as SSH key propagation and API turnup. Occasionally, during the SSH key propagation, an error

message is returned. If that happens, rerun the ctpu up command to see if that clears the problem.

As you continue these instructions, run each command that begins with (vm)$ in your VM
session window.

When the ctpu command launches a Compute Engine virtual machine (VM), automatically
places the RetinaNet model �les from TensorFlow branch
 (https://github.com/tensor�ow/tpu/tree/r1.14/models/o�cial/detection) in the following location:

Prepare the COCO dataset

1. Run the download_and_preprocess_coco.sh script to convert the COCO dataset into a set
of TFRecords (*.tfrecord) that the training application expects.

This installs the required libraries and then runs the preprocessing script. It outputs a
number of *.tfrecord �les in your local data directory. The COCO download and

 gcloud compute ssh username --zone=europe-west4-a  

(vm)$ ls /usr/share/tpu/models/official/detection/  

(vm)$ bash /usr/share/tpu/tools/datasets/download_and_preprocess_coco.sh ./data 

https://github.com/tensorflow/tpu/tree/r1.14/models/official/detection

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 4/12

conversion script takes approximately 1 hour to complete.

2. After you convert the data into TFRecords, copy them from local storage to your Cloud
Storage bucket using the gsutil command. You must also copy the annotation �les.
These �les help validate the model's performance:

Set up the training environment

1. Run the following command to create your Cloud TPU.

ParameterDescription

tpu-size Speci�es the type of Cloud TPU. Specify a type that is available in the zone you are using
to create your Cloud TPU.

zone The zone where you plan to create your Cloud TPU. This should be the same zone you
used for the Compute Engine VM. For example, europe-west4-a.

2. The con�guration you speci�ed appears. Enter y to approve or n to cancel.

You will see a message: Operation success; not ssh-ing to Compute Engine VM due
to --tpu-only flag. Since you previously completed SSH key propagation, you can
ignore this message.

3. Install extra packages

The RetinaNet training application requires several extra packages. Install them now:

4. Update the keepalive values for your VM connection

(vm)$ gsutil -m cp ./data/dir/coco/*.tfrecord ${STORAGE_BUCKET}/coco
(vm)$ gsutil cp ./data/dir/coco/raw-data/annotations/*.json ${STORAGE_BUCKET}/c

 

(vm)$ ctpu up --tpu-only --tpu-size=v3-8 --zone=europe-west4-a 

(vm)$ sudo apt-get install -y python-tk && \
 pip install --user Cython matplotlib opencv-python-headless pyyaml Pillow
 pip install --user 'git+https://github.com/cocodataset/cocoapi#egg=pycoco
 pip install --user -U gast==0.2.2

 

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 5/12



This tutorial requires a long-lived connection to the Compute Engine instance. To ensure
you aren't disconnected from the instance, run the following command:

5. De�ne parameter values

Next, you need to de�ne several parameter values. You use these parameters to train and
evaluate your model.

The variables you need to set are described in the following table:

Parameter Description

STORAGE_BUCKETThis is the name of the Cloud Storage bucket that you created in the Before you
begin section.

TPU_NAME This is the name of the Compute Engine VM and the the Cloud TPU. The Compute
Engine VM and the Cloud TPU name must be the same. Since the Compute Engine
VM was set to the default value, your username, set the Cloud TPU to the same
value.

6. Use the export command to set these variables.

Note: In the following code example, replace your-bucket-name with the name of your bucket and set the

TPU_NAME variable to your username.

7. You are now ready to run the model on the preprocessed COCO data. First, add the top-
level /models folder to the Python path with the command:

Training and evaluation require TensorFlow 1.13 or a later version.

(vm)$ sudo /sbin/sysctl \
 -w net.ipv4.tcp_keepalive_time=120 \
 net.ipv4.tcp_keepalive_intvl=120 \
 net.ipv4.tcp_keepalive_probes=5

 

 (vm)$ export STORAGE_BUCKET=gs://your-bucket-name
 (vm)$ export TPU_NAME=username

 

(vm)$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"  

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 6/12

Note: If you want to monitor the model's output and performance, follow the guide to [setting up TensorBoard]

[tensorboard-setup].

Single Cloud TPU device training

The following training scripts were run on a Cloud TPU v3-8. It will take more time, but you can
also run them on a Cloud TPU v2-8.

This script trains for 22,500 steps and takes approximately 3 hours to train on a Cloud TPU v2-
8 and approximately 1 1/2 hours to train on a Cloud TPU v3-8.

1. Set up the following environment variables:

2. Run the training script:

Parameter Description

tpu Speci�es the name of the Cloud TPU. This is set by specifying the environment
variable (TPU_NAME).

model_dir Speci�es the directory where checkpoints and summaries are stored during
model training. If the folder is missing, the program creates one. When using a
Cloud TPU, the model_dir must be a Cloud Storage path (`gs://...`). You can
reuse an existing folder to load current checkpoint data and to store additional

(vm)$ TPU_NAME=$TPU_NAME \
 export MODEL_DIR=${STORAGE_BUCKET}/retinanet-model-train; \
 export RESNET_CHECKPOINT=gs://cloud-tpu-artifacts/resnet/resnet-nhwc-2018-10-
 export TRAIN_FILE_PATTERN=${STORAGE_BUCKET}/coco/train-*; \
 export EVAL_FILE_PATTERN=${STORAGE_BUCKET}/coco/val-*; \
 export VAL_JSON_FILE=${STORAGE_BUCKET}/coco/instances_val2017.json

 

(vm)$ python /usr/share/tpu/models/official/detection/main.py \
 --use_tpu=True \
 --tpu=${TPU_NAME:?} \
 --num_cores=8 \
 --model_dir="${MODEL_DIR?}" \
 --mode="train" \
 --eval_after_training=True \
 --params_override="{ type: retinanet, train: { checkpoint: { path: ${RESNE

 

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 7/12

checkpoints as long as the previous checkpoints were created using TPU of the
same size and TensorFlow version.

RESNET_CHECKPOINTSpeci�es a pretrained checkpoint. RetinaNet requires a pre-trained image
classi�cation model (like ResNet) as a backbone network. This example uses a
pretrained checkpoint created with the ResNet demonstration model. You can
instead train your own ResNet model if desired, and specify a checkpoint from
your ResNet model directory.

Single Cloud TPU device evaluation

The following procedure uses the COCO evaluation data. It takes about 10 minutes to run
through the evaluation steps.

1. Set up the following environment variables:

2. Run the evaluation script:

ParameterDescription

tpu Speci�es the name of the Cloud TPU. This is set by specifying the environment variable
(TPU_NAME).

model_dir Speci�es the directory where checkpoints and summaries are stored during model
training. If the folder is missing, the program creates one. When using a Cloud TPU, the
model_dir must be a Cloud Storage path (`gs://...`). You can reuse an existing folder to
load current checkpoint data and to store additional checkpoints as long as the previous
checkpoints were created using TPU of the same size and TensorFlow version.

(vm)$ TPU_NAME=$TPU_NAME \
 export MODEL_DIR=${STORAGE_BUCKET}/retinanet-model-train; \
 export EVAL_FILE_PATTERN=${STORAGE_BUCKET}/coco/val-*; \
 export VAL_JSON_FILE=${STORAGE_BUCKET}/coco/instances_val2017.json \
 export EVAL_SAMPLES=5000

 

(vm)$ python /usr/share/tpu/models/official/detection/main.py \
 --use_tpu=True \
 --tpu=${TPU_NAME:?} \
 --num_cores=8 \
 --model_dir="${MODEL_DIR?}" \
 --mode="eval" \
 --params_override="{ type: retinanet, eval: { val_json_file: ${VAL_JSON_F

 

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 8/12

At this point, you can either conclude this tutorial and clean up (#clean-up) your GCP resources,
or you can further explore running the model on Cloud TPU Pods.

Scaling your model with Cloud TPU Pods

You can get results faster by scaling your model with Cloud TPU Pods. The fully supported
RetinaNet model can work with the following Pod slices:

v2-32

v3-32

Caution: Scaling to larger Pod slices are experimental with this model. The training scripts in this tutorial were

optimized for a v3-32 TPU node. They will not run as-is on a v2 con�guration because they require additional

memory.

The script trains for 2109 steps. It takes approximately 30 minutes to train on a v3-32 TPU type
and 10 minutes to train on a v3-128 TPU type.

1. Delete the Cloud TPU resource you created for training the model on a single device.

2. Run the ctpu up command, using the tpu-size parameter to specify the Pod slice you
want to use. For example, the following command uses a v3-32 Pod slice.

3. The con�guration you speci�ed appears. Enter y to approve or n to cancel.

You will see a message: Operation success; not ssh-ing to Compute Engine VM due
to --tpu-only flag. Since you previously completed SSH key propagation, you can
ignore this message.

4. Install the extra packages needed by RetinaNet.

(vm)$ ctpu delete --tpu-only --zone=europe-west4-a  

(vm)$ ctpu up --tpu-only --tpu-size=v3-32 --zone=europe-west4-a  

(vm)$ sudo apt-get install -y python-tk && \
 pip install --user Cython matplotlib opencv-python-headless pyyaml Pillow
 pip install --user 'git+https://github.com/cocodataset/cocoapi#egg=pycoco
 pip install --user -U gast==0.2.2

 

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 9/12

5. Update the keepalive values of your VM connection

This tutorial requires a long-lived connection to the Compute Engine instance. To ensure
you aren't disconnected from the instance, run the following command:

6. De�ne the variables you need for training on a Pod. Use the export command to create
multiple bash variables and use them in a con�guration string.

Note: In the following code example, replace your-bucket-name with the name of your bucket and set

the TPU_NAME variable to your username.

7. Add the top-level /models folder to the Python path.

8. Set up the following environment variables:

9. Run the Pod training script on a v3-32 TPU node:

(vm)$ sudo /sbin/sysctl \
 -w net.ipv4.tcp_keepalive_time=120 \
 net.ipv4.tcp_keepalive_intvl=120 \
 net.ipv4.tcp_keepalive_probes=5



(vm)$ export STORAGE_BUCKET=gs://your-bucket-name
(vm)$ export TPU_NAME=username

 

(vm)$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"  

(vm)$ TPU_NAME=$TPU_NAME \
 export MODEL_DIR=${STORAGE_BUCKET}/retinanet-model-pod; \
 export RESNET_CHECKPOINT=gs://cloud-tpu-artifacts/resnet/resnet-nhwc-2018-10-
 export TRAIN_FILE_PATTERN=${STORAGE_BUCKET}/coco/train-*;

 

(vm)$ python /usr/share/tpu/models/official/detection/main.py \
 --use_tpu=True \
 --tpu=${TPU_NAME:?} \
 --num_cores=32 \
 --model_dir="${MODEL_DIR?}" \
 --mode="train" \
 --eval_after_training=False \
 --params_override="{ type: retinanet, train: { train_batch_size: 1024, to

 

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 10/12

Parameter Description

tpu Speci�es the name of the Cloud TPU. This is set by specifying the environment
variable (TPU_NAME).

model_dir Speci�es the directory where checkpoints and summaries are stored during
model training. If the folder is missing, the program creates one. When using a
Cloud TPU, the model_dir must be a Cloud Storage path (`gs://...`). You can
reuse an existing folder to load current checkpoint data and to store additional
checkpoints as long as the previous checkpoints were created using TPU of the
same size and TensorFlow version.

RESNET_CHECKPOINTSpeci�es a pretrained checkpoint. RetinaNet requires a pre-trained image
classi�cation model (like ResNet) as a backbone network. This example uses a
pretrained checkpoint created with the ResNet demonstration model. You can
instead train your own ResNet model if desired, and specify a checkpoint from
your ResNet model directory.

Cleaning up

To avoid incurring charges to your Google Cloud Platform account for the resources used in
this tutorial:

1. Disconnect from the Compute Engine instance, if you have not already done so:

Your prompt should now be user@projectname, showing you are in the Cloud Shell.

2. In your Cloud Shell, run ctpu delete with the --zone �ag you used when you set up the
Cloud TPU to delete your Compute Engine VM and your Cloud TPU:

Important: If you set the TPU resources name when you ran ctpu up, you must specify that name

with the --name �ag when you run ctpu delete in order to shut down your TPU resources.

(vm)$ exit  

$ ctpu delete --zone=europe-west4-a  

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 11/12

3. Run the following command to verify the Compute Engine VM and Cloud TPU have been
shut down:

The deletion might take several minutes. A response like the one below indicates there are
no more allocated instances:

Caution: All training data will be lost when you delete your bucket, so only do this step when you are

�nished running the tutorial.

4. Run gsutil as shown, replacing your-bucket-name with the name of the Cloud Storage
bucket you created for this tutorial:

What's next

Train with di�erent image sizes

You can explore using a larger backbone network (for example, ResNet-101 instead of ResNet-
50). A larger input image and a more powerful backbone will yield a slower but more precise
model.

Use a di�erent basis

Alternatively, you can explore pre-training a ResNet model on your own dataset and using it as a
basis for your RetinaNet model. With some more work, you can also swap in an alternative
backbone network in place of ResNet. Finally, if you are interested in implementing your own
object detection models, this network may be a good basis for further experimentation.

$ ctpu status --zone=europe-west4-a  

2018/04/28 16:16:23 WARNING: Setting zone to "europe-west4-a"
No instances currently exist.
 Compute Engine VM: --
 Cloud TPU: --



$ gsutil rm -r gs://your-bucket-name  

1/25/2020 Training RetinaNet on Cloud TPU | Cloud TPU | Google Cloud

https://cloud.google.com/tpu/docs/tutorials/retinanet 12/12

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 2, 2019.

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

