
1/25/2020 Using TPUEstimator API on Cloud TPU  |  Google Cloud

https://cloud.google.com/tpu/docs/using-estimator-api 1/6

This document covers the usage of the TPUEstimator API with Cloud TPU. TPUEstimator
simpli�es running models on a Cloud TPU by handling numerous low-level, hardware-speci�c
details.

Models written using TPUEstimator work across CPUs, GPUs, single TPU devices, and whole
TPU pods, generally with no code changes. TPUEstimator also makes it easier to achieve
maximum performance by automatically performing some optimizations on your behalf.

To learn how machine learning workloads operate on TPU hardware in general, read the System
Architecture (/tpu/docs/system-architecture#software_architecture) documentation.

At a high-level, the standard TensorFlow Estimator API
 (https://www.tensor�ow.org/api_docs/python/tf/estimator/Estimator) provides:

Estimator.train() - train a model on a given input for a �xed number of steps.

Estimator.evaluate() - evaluate the model on a test set.

Estimator.predict() - run inference using the trained model.

Estimator.export_savedmodel() - export your model for serving.

In addition, Estimator includes default behavior common to training jobs, such as saving and
restoring checkpoints, creating summaries for TensorBoard, etc.

Estimator requires you to write a model_fn and an input_fn that correspond to the model and
input portions of your TensorFlow graph.

The TPUEstimator (https://www.tensor�ow.org/api_docs/python/tf/contrib/tpu/TPUEstimator) wraps
the computation (the model_fn) and distributes it to all available Cloud TPU cores. The learning
rate must be tuned with the batch size.

https://cloud.google.com/tpu/docs/system-architecture#software_architecture
https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimator


1/25/2020 Using TPUEstimator API on Cloud TPU  |  Google Cloud

https://cloud.google.com/tpu/docs/using-estimator-api 2/6

The input_fn function models the input pipeline running on the remote host CPU. Use
tf.data to program the input ops as described in the programmer's guide
 (https://www.tensor�ow.org/programmers_guide/datasets). Each invocation handles input of
the global batch onto one device. The shard batch size is retrieved from
params['batch_size']. Pro tip: return a dataset instead of tensors for optimal
performance.

The model_fn function models the computation being replicated and distributed to the
TPUs. The computation should contain only ops supported by Cloud TPU. TensorFlow
ops (/tpu/docs/tensor�ow-ops) includes the list of available ops.

The following code demonstrates training a MNIST model using TPUEstimator:

https://www.tensorflow.org/programmers_guide/datasets
https://cloud.google.com/tpu/docs/tensorflow-ops


1/25/2020 Using TPUEstimator API on Cloud TPU  |  Google Cloud

https://cloud.google.com/tpu/docs/using-estimator-api 3/6



1/25/2020 Using TPUEstimator API on Cloud TPU  |  Google Cloud

https://cloud.google.com/tpu/docs/using-estimator-api 4/6

The following section covers the new concepts introduced in the above sample, to help you use
Cloud TPU effectively.

TPUEstimator uses an in-graph replication (https://www.tensor�ow.org/deploy/distributed)

approach to running TensorFlow programs. In-graph (single-session) replication differs from
the between-graph (multi-session) replication training typically used in distributed TensorFlow.
The major differences include:

1. In TPUEstimator, the TensorFlow session master is not local. Your Python program
creates a single graph that is replicated across all of the cores in the Cloud TPU. A typical
con�guration sets the TensorFlow session master to be the �rst worker.

2. The input pipeline is placed on remote hosts (instead of local) to ensure that training
examples can be fed to the Cloud TPU as fast as possible. A dataset (tf.data) is
required.

https://www.tensorflow.org/deploy/distributed


1/25/2020 Using TPUEstimator API on Cloud TPU  |  Google Cloud

https://cloud.google.com/tpu/docs/using-estimator-api 5/6

3. Cloud TPU workers operate synchronously, with each worker performing the same step at
the same time.

We recommend that you port a small, simple model �rst and test end-to-end behavior. Doing so
helps solidify your familiarity with the basic concepts of TPUEstimator. When your simple
model runs, gradually add more functionality.

See the tutorials (/tpu/docs/tutorials/) for a set of sample models and instructions for running
them with Cloud TPU. Additional models are available on GitHub
 (https://github.com/tensor�ow/tpu).

To convert your code from tf.estimator.Estimator class to use
tf.contrib.tpu.TPUEstimator, change the following:

Change tf.estimator.RunConfig to tf.contrib.tpu.RunConfig.

Set TPUConfig (part of the tf.contrib.tpu.RunConfig) to specify the
iterations_per_loop. iterations_per_loop is the number of iterations to run on the
Cloud TPU for one session.run call (per training loop).

Cloud TPU runs a speci�ed number of iterations of the training loop before returning to the
host. No checkpoints or summaries are saved until all Cloud TPU iterations are run.

In model_fn, use tf.contrib.tpu.CrossShardOptimizer to wrap your optimizer. For
example:

Change tf.estimator.Estimator to tf.contrib.tpu.TPUEstimator.

The default RunConfig saves summaries for TensorBoard every 100 steps and writes
checkpoints every 10 minutes.

https://cloud.google.com/tpu/docs/tutorials/
https://github.com/tensorflow/tpu


1/25/2020 Using TPUEstimator API on Cloud TPU  |  Google Cloud

https://cloud.google.com/tpu/docs/using-estimator-api 6/6

There are two reasons:

1. Your application code runs on the client while the TPU computation is executed on the
worker. Input pipeline ops must be placed on the remote worker for good performance.
Only tf.data (Dataset) supports this.

2. In order to amortize the TPU launch cost, the model training step is wrapped in a
tf.while_loop, such that one Session.run actually runs many iterations for a single
training loop. Currently only tf.data can be wrapped by a tf.while_loop.

You can pro�le model training performance using the pro�ler
 (/tpu/docs/cloud-tpu-tools#pro�le_tab) provided for TensorBoard.

https://cloud.google.com/tpu/docs/cloud-tpu-tools#profile_tab

