
1/25/2020 Using Stackdriver Trace with Zipkin  |  Google Cloud

https://cloud.google.com/trace/docs/zipkin 1/5

This page describes how to use a Zipkin  (http://zipkin.io/) server to receive traces from Zipkin clients
and forward those traces to Stackdriver Trace for analysis.

You might want to use a Zipkin server if your application is are already instrumented with Zipkin and
either you don't want to run your own trace backend or you want access to Stackdriver Trace's
advanced analysis tools.

This page describes several ways to set up your Zipkin server:

Using a container image (#container-image-option)

Running outside of Google Cloud (#non-GCP-option)

Modifying an existing Zipkin server (#existing-zipkin-server)

This functionality is maintained by the Zipkin project itself and isn't o�cially supported by Google.

A container image of the Stackdriver Trace Zipkin Collector is available on GitHub. This repository
 (https://github.com/openzipkin/docker-zipkin-gcp) contains the Docker build de�nition and layers Google

Cloud support on the base Zipkin Docker image, in addition to detailed setup steps.

You can run this on your container host of choice, including Google Kubernetes Engine.

To run the image:

http://zipkin.io/
https://github.com/openzipkin/docker-zipkin-gcp


1/25/2020 Using Stackdriver Trace with Zipkin  |  Google Cloud

https://cloud.google.com/trace/docs/zipkin 2/5



If you are running this container within the Google Cloud, such as on a Compute Engine instance or
Google Kubernetes Engine cluster, the environment's default credentials are automatically captured
and traces are automatically sent to Stackdriver Trace.

For the full setup process, go to the GitHub repository for the Zipkin Docker image
 (https://github.com/openzipkin/docker-zipkin-gcp).

As described on this page, you must also con�gure your Zipkin tracers
 (#how_to_con�gure_zipkin_tracers).

If you would like to build and run the collector outside of Google Cloud, such as on a physical server
running on-premises, complete the following steps:

1. Sign in (https://accounts.google.com/Login) to your Google Account.

If you don't already have one, sign up for a new account (https://accounts.google.com/SignUp).

2. In the Cloud Console, on the project selector page, select or create a Cloud project.

Note: If you don't plan to keep the resources that you create in this procedure, create a project instead of

selecting an existing project. After you �nish these steps, you can delete the project, removing all resources

associated with the project.

Go to the project selector page (https://console.cloud.google.com/projectselector2/home/dashboard)

A billing account isn't required as the collector won't be running on Google Cloud.

To allow your service to authenticate to the Stackdriver Trace API:

1. Create a service account (/iam/docs/creating-managing-service-accounts).

a. Ensure that the new service account has been granted a project editor role
 (/iam/docs/granting-roles-to-service-
accounts#granting_access_to_a_service_account_for_a_resource)

https://github.com/openzipkin/docker-zipkin-gcp
https://accounts.google.com/Login
https://accounts.google.com/SignUp
https://console.cloud.google.com/projectselector2/home/dashboard
https://cloud.google.com/iam/docs/creating-managing-service-accounts
https://cloud.google.com/iam/docs/granting-roles-to-service-accounts#granting_access_to_a_service_account_for_a_resource


1/25/2020 Using Stackdriver Trace with Zipkin  |  Google Cloud

https://cloud.google.com/trace/docs/zipkin 3/5

so that it can write data to the Trace API.

b. Select Furnish a new private key and choose JSON.

c. Save the JSON credentials �le to a directory on the machine that will be running the
collector service.

Con�gure your network con�guration to allow TCP tra�c on port 9411 to pass to the machine
running the Zipkin collector.

If you'll be submitting traces from applications hosted outside of the �rewall, note that Zipkin tracer-
to-collector tra�c is not encrypted or authenticated. Connections between the Stackdriver Trace
Zipkin collector and the Stackdriver Trace API are encrypted and authenticated, as are connections
sourced from the Stackdriver Trace instrumentation libraries.

See Using a container image (#container-image-option), above.

Follow the instructions in the common Con�gure Zipkin tracers (#how_to_con�gure_zipkin_tracers)

section on this page.

The Zipkin project maintains instructions on how to use Stackdriver Trace as a storage destination
for an existing Zipkin server. These are available on the GitHub repository for the Zipkin Docker
image  (https://github.com/openzipkin/docker-zipkin-gcp).

No matter how you host the Stackdriver Trace Zipkin Collector, you'll need to con�gure your Zipkin
tracers to send data to it.

https://github.com/openzipkin/docker-zipkin-gcp


1/25/2020 Using Stackdriver Trace with Zipkin  |  Google Cloud

https://cloud.google.com/trace/docs/zipkin 4/5

The collector can be referenced by its internal IP address, external IP address (if it will be receiving
traces from applications hosted outside of Google Cloud), or hostname. Each Zipkin tracer is
con�gured differently - for example, to point a Brave tracer at a collector with the IP address 1.2.3.4,
the following lines must be added to your Java codebase:

Q: What are the limitations?

This release has two known limitations:

1. Zipkin tracers must support the correct Zipkin time and duration semantics. For more
information, go to Instrumenting a library  (https://zipkin.io/pages/instrumenting.html) and scroll
down to the section on Timestamps and duration.

2. Zipkin tracers and the Stackdriver Trace instrumentation libraries can't append spans to the
same traces, meaning that traces that are captured in one library won't contain spans for
services instrumented in the other type of library. For example:

https://zipkin.io/pages/instrumenting.html


1/25/2020 Using Stackdriver Trace with Zipkin  |  Google Cloud

https://cloud.google.com/trace/docs/zipkin 5/5

Requests made to the Node.js web application will be traced with the Zipkin library and sent to
Stackdriver Trace. However, these traces will not contain spans generated within the API
application or for the RPC calls that it makes to the Database. This is because Zipkin and
Stackdriver Trace use different formats for propagating trace context between services.

For this reason we recommend that projects wanting to use Stackdriver Trace either exclusively
use Zipkin-compatible tracers along with the Zipkin Collector, or use instrumentation libraries
that work natively with Stackdriver Trace (like the o�cial Node.js
 (https://github.com/GoogleCloudPlatform/cloud-trace-nodejs), Java
 (https://github.com/GoogleCloudPlatform/cloud-trace-java), or Go
 (https://godoc.org/cloud.google.com/go/trace) libraries).

Q: Will this work as a full Zipkin server?

No, this feature only writes data to Stackdriver Trace.

https://github.com/GoogleCloudPlatform/cloud-trace-nodejs
https://github.com/GoogleCloudPlatform/cloud-trace-java
https://godoc.org/cloud.google.com/go/trace

