
1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 1/12

Tra�c Director includes route rules and tra�c policies that enable you to control tra�c within
your Tra�c Director deployment. These capabilities are based on xDS API-compatible sidecar
proxies, such as Envoy. They are enabled using the load balancing components URL maps,
forwarding rules, and backend services.

A route rule matches information you specify to an incoming request and makes a routing
decision based on the match. Route rules are executed according to priority.

After tra�c is routed, tra�c policies take further action to manage your tra�c. Tra�c policies
generally belong to these categories:

Load balancer settings, which control the load balancing algorithm

Circuit breakers, which control the volume of connections to an upstream service

Outlier detection, which controls the eviction of unhealthy hosts from the load balancing
pool

Route rules and tra�c policies let you implement tra�c splitting, tra�c steering, fault injection,
circuit breaking, and mirroring.

Tra�c splitting splits tra�c based on weight. For example, you can send 99% of tra�c to one
service instance and 1% to another service instance. Tra�c splitting is typically used for
deploying new versions, A/B testing, service migration, and similar processes.



1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 2/12

Traffic Splitting

GCP-managed Control plane:

Shopping Cart App

Cart Cart

version: 1.5 
env: Prod

version: 2.0-alpha 
env: staging

99% 1%

Traffic Director

Proxy Proxy

Frontend

Proxy

 (/tra�c-director/images/td-tra�c-splitting.svg)

Tra�c Director tra�c splitting (click to enlarge)

Tra�c steering directs tra�c to service instances based on content in HTTP request headers.
For example, if a user's device is an Android device, with user-agent:Android in the request
header, that tra�c is sent to service instances designated to receive Android tra�c, and tra�c
that does not have user-agent:Android is sent to instances that handle other devices.

https://cloud.google.com/traffic-director/images/td-traffic-splitting.svg


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 3/12

Shopping Cart App

Cart Cart

version: 1.5 
env: Prod

version: 2.0-alpha 
env: staging

User-agent: Android User-agent: xPhone

Traffic Steering

GCP-managed Control plane:

Traffic Director

Frontend

Proxy

Proxy Proxy

 (/tra�c-director/images/td-tra�c-steering.svg)

Tra�c Director tra�c steering (click to enlarge)

Fault injection enables you to test the resiliency of services by simulating service failure
scenarios, such as delays and aborted requests. Delay injection con�gures the client side proxy
to introduce delays for a fraction of requests before sending the request to the selected backend
service. Abort injection con�gures the sidecar proxy to directly respond to a fraction of requests
with failure response codes, rather than forwarding those requests to the backend service.

https://cloud.google.com/traffic-director/images/td-traffic-steering.svg


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 4/12

Circuit breaking enforces limits on requests to a particular service, such as the maximum
number of connections or maximum number requests after which requests are prevented from
reaching the service to protect the service from degrading further.

Mirroring is implemented by deploying a debug application that receives a copy of your real
tra�c. The production application processes the original tra�c, while the debug application
discards responses. You can use mirroring to test binaries with production tra�c and to debug
productions errors on the debug application rather than on your production application.

Route rules provide several ways to match HTTP requests and perform various actions such as
tra�c splitting across several backend services, responding with redirects and altering requests
or responses. Route rules are con�gured using the URL map
 (/compute/docs/reference/rest/v1/urlMaps).

Match rules enable Tra�c Director to match one or more attributes of a request and take
actions speci�ed in the route rule. The following attributes of a request can be used to
specify the matching criteria:

Host: A host name is the domain name portion of a URL; for example, the host name
portion of the URL http://example.net/video/hd is example.net.

Paths are the part of the URL that follows the hostname; for example /images in
http://service-host-name/images. The rule can specify whether the entire path or
only the leading portion of the path must match. The rule can alternatively supply a
regular expression that must match the path.

Other HTTP request parameters such as HTTP headers, which allows cookie
matching, as well as matching based on query parameters (GET variables).

Metadata �lters: These are opaque match criteria for proxies conforming to Envoy's
xDS protocol. For example, sidecar proxies making xDS requests may supply node
metadata such as application version, staged deployment version, and other criteria.
Tra�c Director supplies route con�guration only to those sidecar proxies when
settings in metadata �lters match corresponding settings in the node metadata
supplied by the proxy.

Route actions con�gure Tra�c Director with speci�c actions to take when a route rule
matches the attributes of a request. Use the following advanced route actions:

https://cloud.google.com/compute/docs/reference/rest/v1/urlMaps


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 5/12

Redirects: Tra�c Director returns a con�gurable 3xx response code. It also sets the
Location response header with the appropriate URI, replacing the host and path as
speci�ed in the redirect action.

URL rewrites: Tra�c Director can re-write the host name portion of the URL, the path
portion of the URL, or both, before sending a request to the selected backend service.

Header transformations: Tra�c Director can add or remove request headers before
sending a request to the backend service. It can also add or remove response
headers after receiving a response from the backend service. You con�gure header
transformations at various levels of the URL map, including its top level, at a path
matcher, in a route rule, and in a weighted backend service. This allows you to
specify hierarchical control of headers.

Tra�c mirroring: In addition to forwarding the request to the selected backend
service, Tra�c Director sends an identical request to the con�gured mirror backend
service on a "�re and forget"
 (https://www.envoyproxy.io/docs/envoy/latest/api-v2/api/v2/route/route.proto#route-
routeaction-requestmirrorpolicy)

basis. This capability is useful for logging requests.

Weighted tra�c splitting is a con�guration that allows tra�c for a matched rule to
be distributed to multiple backend services, proportional to a user-de�ned weight
assigned to the individual backend service. This capability is useful for con�guring
staged deployments or A/B testing. For example, the route action could be
con�gured such that 99% of the tra�c is sent to a service that's running a stable
version of an application, while 1% of tra�c is sent to a separate service running a
newer version of that application.

Retries con�gure the conditions under which Tra�c Director retries failed requests,
how long it waits before retrying and the maximum number of retries permitted.

Fault injection: Tra�c Director can intentionally introduce errors when servicing
requests to simulate failures, including high latency, service overload, service
failures, and network partitioning. This feature is useful for testing the resiliency of a
service to simulated faults.

Delay injection con�gures the proxy to introduce delays for a user-de�ned
portion of requests before sending the request to the selected backend service.

Abort injection con�gures the proxy to respond directly to a fraction of requests
with user-de�ned HTTP status codes instead of forwarding those requests to

https://www.envoyproxy.io/docs/envoy/latest/api-v2/api/v2/route/route.proto#route-routeaction-requestmirrorpolicy


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 6/12

the backend service.

Security policies: Cross-origin resource sharing(CORS)
 (https://en.wikipedia.org/wiki/Cross-origin_resource_sharing) policies handle Tra�c

Director settings for enforcing CORS requests.

Route rules are executed in priority order, providing you with �exibility in associating match rules
with actions.

For route rules within a given path matcher, the priority of each rule determines the order in
which the load balancer interprets the route rules. The route rules are evaluated in the order of
priority, from the lowest to the highest number. The priority of a rule decreases as its number
increases (1, 2, 3, N+1). The �rst rule that matches a request is applied. After the �rst match is
made, Tra�c Director stops evaluating the rules and any remaining rules are ignored. For
example, if you have four rules with priorities 2, 16, 23, and 45, and the �rst match is to the rule
with priority 16, the rules with priority 23 and priority 45 are ignored.

You cannot con�gure two or more route rules with the same priority. You must set the priority for
each rule to a number from 0 through 2147483647.

Priority numbers can have gaps. This allows you to add or remove rules in the future without
affecting any existing rules. For example, you might have rules with priority 1, 2, 3, 4, 5, 9, 12,
and 16. This is a valid series, to which you can add rules with the values 6, 7, 8, 11, 13, 14, and
15. The new rules that you add do not have any impact on the existing rules.

You must provide a priority for each route rule. Creating or updating a route rule requires that
you provide a value for the priority �eld. Existing route rules that you do not update continue to
work even though the priority �eld does not have a value.

Tra�c policies are groups of settings that de�ne how load balancing behaves, including the
response to failing backend services and how to prevent localized failures from affecting the
rest of the service mesh. The following tra�c policy features are con�gured in the backend
service (/compute/docs/reference/rest/v1/backendServices).

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://cloud.google.com/compute/docs/reference/rest/v1/backendServices


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 7/12

Load balancing policy: Tra�c Director performs global load balancing based on available
capacity, and, as stated in the Envoy documentation
 (https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/localit
y_weight.html)

, sets the locality level (per Google Cloud zone) load balancing weights, for the proxy to
choose a particular Google Cloud zone for the backend VMs or endpoints in NEGs. The
load balancing policies speci�ed in the backend service further determine the algorithm
used for backend VMs or endpoints in NEGs within the locality to be chosen after a
weighted locality choice. Load balancing algorithms include round robin, ring hash, and
backends VMs or endpoints in NEGs with the least request
 (https://www.envoyproxy.io/docs/envoy/latest/api-v2/api/v2/cds.proto#envoy-api-enum-cluster-
lbpolicy)

. Note that in Tra�c Director, global load balancing is performed using URL maps,
forwarding rules, and backend services.

Session a�nity: Tra�c Director offers several session a�nity options: HTTP cookie-based
a�nity, HTTP header-based a�nity, client IP address a�nity, and generated cookie a�nity.
Note that a�nity settings are not honored if more than one weightedBackendServices is
included in routeAction. For more information on session a�nity, read Session a�nity
 (/load-balancing/docs/https/#session_a�nity).

Outlier detection is a set of policies that specify the criteria for eviction of unhealthy
backend VMs or endpoints in NEGs, along with criteria de�ning when a backend or
endpoint is considered healthy enough to receive tra�c again.

Circuit breaking sets upper limits on the volume of connections and requests per
connection to a backend service.

Three existing Google Cloud resources are used to implement capabilities such as advanced
route and tra�c policies. The following diagram shows which resources are used to implement
each feature:

https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/locality_weight.html
https://www.envoyproxy.io/docs/envoy/latest/api-v2/api/v2/cds.proto#envoy-api-enum-cluster-lbpolicy
https://cloud.google.com/load-balancing/docs/https/#session_affinity


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 8/12

Forwarding 
rule

Target HTTP(s) 
Proxy URL Map Instance 

Groups

Instance 
Groups

Backend 
Service

Metadata Match

Path Matcher 
• Route Rule 

• Priority 
• Description 
• Rule Match 

• URL Match 
• Header Match 
• Query Parameter Match 

• Rule Action 
• Weighted Traffic Splitting 
• URL Rewrite 
• Traffic Mirroring 
• Fault Injection 
• Header Transforms 
• Redirect

• Locality LB Policy 
• Consistent Hash LB Settings 

• Cookie 
• Header 

• Circuit Breakers 
• Outlier Detection

 (/tra�c-director/images/td-data-model.svg)

Tra�c Director data model (click to enlarge)

Tra�c Director uses a forwarding rule whose load balancing scheme is
INTERNAL_SELF_MANAGED. The forwarding rule intercepts tra�c on a con�gurable RFC 1918
IP address, then sends it to a target HTTP proxy and URL map. The forwarding rule resource
supports advanced tra�c management with selective con�guration of proxies. Tra�c Director
supplies route con�guration to only those proxies that satisfy criteria speci�ed in the forwarding
rule's metadata �lters.

You use metadata �lters to push con�gurations to a subset of sidecar proxies. If no metadata
�lter is in place, all proxies receive all of the con�gurations associated with the VPC network.
Using metadata �lters gives you �ner control of the scope of the forwarding rule, and therefore
greater control over which URL map and backend service de�ne tra�c distribution.

This is useful for the following scenarios:

1. To comply with your network requirements, multiple projects use the same Shared VPC
network, but each service project wants its Tra�c Director resources to be visible only to
proxies in the same project.

2. The data plane is partitioned and each proxy needs to know about only a subset of
con�gurations in the network.

3. You are introducing a new con�guration and you need to test it on a subset of proxies
before you make it available to all proxies.

https://cloud.google.com/traffic-director/images/td-data-model.svg


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 9/12

For information on how to con�gure metadata �lters, see Setting up con�g �ltering based on
MetadataFilter match
 (/tra�c-director/docs/con�gure-advanced-tra�c-management#con�g-�ltering-metadata).

The URL map component is extended to support advanced routing features in the path matcher.
You can match requests based on path pre�x, full path, path regex, HTTP header, and query
parameter. The pre�x, full path, and regex all apply to the path portion of the match. For more
information, read the Envoy proxy RouteMatch documentation
 (https://www.envoyproxy.io/docs/envoy/latest/api-v2/api/v2/route/route.proto#envoy-api-msg-route-
routematch)

.

Path matcher: Tra�c Director extends the URL map's path matcher concept. You can
continue to use simple path rules as you would for a GCP HTTP(S) load balancer, or you
can use route rules instead. Use the two types of rules exclusively. Path rules are evaluated
on the longest-path-matches-�rst basis and these rules can be speci�ed in any order.
Route rules are interpreted in order. This allows greater �exibility in de�ning complex route
criteria.

Route rules (HttpRouteRules): Tra�c Director evaluates route rules in priority order.
The following are the components of a route rule:

Priority: A number from 0 to 2147483647 inclusive assigned to a rule within a
given path matcher that determines the order in which the load balancer
interprets the route rules. The priority of a rule decreases as its number
increases, so that a rule with the number 4 takes priority over a rule with the
number 25. The �rst rule that matches the request is applied. Priority numbers
can have gaps. You cannot create two or more rules with the same priority.

Description: An optional description of up to 1024 characters.

Route rule match (HttpRouteRuleMatch): Allows you to determine if the route
rule applies to a request by matching all or a subset of the request's attributes
such as the path, HTTP headers, and query (GET) parameters. Within an
HttpRouteRuleMatch, all matching criteria must be met for the rule's actions to
take effect. If a rule has multiple HttpRouteRuleMatches, the actions of the rule
take effect when a request matches any of the rule's HttpRouteRuleMatches.

https://cloud.google.com/traffic-director/docs/configure-advanced-traffic-management#config-filtering-metadata
https://www.envoyproxy.io/docs/envoy/latest/api-v2/api/v2/route/route.proto#envoy-api-msg-route-routematch


1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 10/12

Route action (HttpRouteAction): Allows you to specify what actions Tra�c
Director should take when the criteria within HttpRouteRuleMatch are met.
These actions include tra�c splitting, URL rewrites, retry and mirroring, fault
injection, and CORS policies.

Redirect action (HttpRedirectAction): You can con�gure Tra�c Director to
respond with an HTTP redirect when the criteria within HttpRouteRuleMatch
are met.

Header action (HttpHeaderAction): You can con�gure request and response
header transformation rules when the criteria within HttpRouteRuleMatch are
met.

Metadata �lters (MetadataFilters): You can specify criteria for which xDS
compliant proxies get routing con�guration tied to a route rule.

Path rules (PathRule): Tra�c Director supports path rule objects in path matchers to
maintain compatibility with existing URL maps. You can enter path rules in any
order. Tra�c Director tries to match the request's path to each of the paths from all
path rules within that path matcher, on the longest-path-matches-�rst basis. If a path
match occurs, tra�c is routed to the backend service of the corresponding path rule.

The URL map hierarchy for advanced route features is as follows:

Default backend service or default backend bucket

Tra�c Director only: default route action

Tra�c Director only: default redirect

List of host rules

List of path matchers, each path matcher containing

Tra�c Director only: default route action

Tra�c Director only: default redirect

Default backend service or default backend bucket for path matcher

List of path rules

Tra�c Director only: list of route rules

Tra�c Director only: list of match rules



1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 11/12

Tra�c Director only: route action

Tra�c Director only: redirect

Tra�c Director only: header action

Tra�c Director uses a backend service whose load balancing scheme is
INTERNAL_SELF_MANAGED. A backend service with this scheme supports the settings that
implement the bulk of the tra�c policies. The following attributes can be speci�ed for an
internal self-managed backend service:

Load balancing policy (LocalityLoadBalancingPolicy): For an internal self-managed
backend service, tra�c distribution is accomplished by using a combination of a load
balancing mode and a load balancing policy. The backend service �rst directs tra�c to a
backend (instance group or NEG) according to the backend's balancing mode, then, once a
backend has been selected, Tra�c Director distributes tra�c according to the load
balancing policy. The balancing mode allows Tra�c Director to �rst select a locality, such
as a Google Cloud zone; then, the load balancing policy is used to select a speci�c
backend VM or endpoint in a NEG.

Session a�nity (SessionA�nity): Internal self-managed backend services support four
session a�nities: client IP address, HTTP cookie-based, HTTP header-based, and
generated cookie (generated by Tra�c Director itself) a�nity.

Consistent hash (ConsistentHashLoadBalancerSettings) de�ne criteria for building
consistent hashes from cookies and headers for Tra�c Director to consistently route new
requests to the same backend VMs or endpoints in NEGs.

Circuit breakers (CircuitBreakers) de�ne parameters for limiting the volume of tra�c to any
particular backend VM or endpoint of the backend service. This prevents overloading
services with requests that they cannot handle in a meaningful way.

Outlier detection (OutlierDetection) de�nes criteria for determining when a backend VM or
endpoint in a NEG is deemed unhealthy and excluded from load balancing considerations,
as well as the conditions that must be satis�ed to reconsider the backend VM or endpoints
for load balancing. A backend VM or endpoint is deemed unhealthy when the health check
linked to the backend service marks the backend VM or endpoint in a NEG as unhealthy.



1/25/2020 Advanced traffic management  |  Traffic Director Documentation

https://cloud.google.com/traffic-director/docs/traffic-control/ 12/12

See Con�guring advanced tra�c management
 (/tra�c-director/docs/con�gure-advanced-tra�c-management) for information on how to set up
advanced tra�c management.

https://cloud.google.com/traffic-director/docs/configure-advanced-traffic-management

