
1/23/2020 Shot Change Detection Tutorial | Cloud Video Intelligence API Documentation | Google Cloud

https://cloud.google.com/video-intelligence/docs/shot-detection 1/7

AI & Machine Learning Products

Cloud Video Intelligence API

Documentation Guides

Audience

This tutorial is designed to let you quickly start exploring and developing applications with the
Video Intelligence API. It is designed for people familiar with basic programming, though even
without much programming knowledge, you should be able to follow along. Having walked
through this tutorial, you should be able to use the Reference documentation
 (https://cloud.google.com/video-intelligence/docs/reference/rest/) to create your own basic
applications.

This tutorial steps through a Video Intelligence API application using Python code. The purpose
here is not to explain the Python client libraries, but to explain how to make calls to the Video
Intelligence API. Applications in Java and Node.js are essentially similar.

If you're looking for a code-only example or an example in another language, check out the
companion how-to guide (https://cloud.google.com/video-intelligence/docs/analyze-shots).

Prerequisites

This tutorial has several prerequisites:

You've set up a Cloud Video Intelligence API project
 (https://cloud.google.com/video-intelligence/docs/before-you-begin) in the Google Cloud
Console.

You've set up your environment using a service account and Application Default
Credentials
 (https://cloud.google.com/video-intelligence/docs/common/auth#set_up_a_service_account).

You have basic familiarity with Python (https://www.python.org/) programming.

Set up your Python development environment. It is recommended that you have the latest
version of Python, pip, and virtualenv installed on your system. For instructions, refer to

 (https://cloud.google.com/products/machine-learning/)

 (https://cloud.google.com/video-intelligence/)

 (https://cloud.google.com/video-intelligence/docs/)

Shot Change Detection Tutorial

https://cloud.google.com/products/machine-learning/
https://cloud.google.com/video-intelligence/
https://cloud.google.com/video-intelligence/docs/
https://cloud.google.com/video-intelligence/docs/
https://cloud.google.com/video-intelligence/docs/reference/rest/
https://cloud.google.com/video-intelligence/docs/analyze-shots
https://cloud.google.com/video-intelligence/docs/before-you-begin
https://cloud.google.com/video-intelligence/docs/common/auth#set_up_a_service_account
https://www.python.org/

1/23/2020 Shot Change Detection Tutorial | Cloud Video Intelligence API Documentation | Google Cloud

https://cloud.google.com/video-intelligence/docs/shot-detection 2/7

video/cloud-client/shotchange/shotchange.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-
client/shotchange/shotchange.py)

ORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/VIDEO/CLOUD-CLIENT/SHOTCHANGE/SHOTCHANGE.PY)

the Python Development Environment Setup Guide (https://cloud.google.com/python/setup)

for Google Cloud Platform.

You've installed the Google Cloud client library
 (https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/videointelligence)

Annotating a video using Shot Change detection

This tutorial walks you through a basic Video API application, using a SHOT_CHANGE_DETECTION
request. A SHOT_CHANGE_DETECTION request provides the annotation results:

List of all shots that occur within the video

For each shot, provide the start and end time of the shot

We'll show the entire code �rst. (Note that we have removed most comments from this code in
order to show you how brief it is. We'll provide more comments as we walk through the code.)

import argparse

from google.cloud import videointelligence

def analyze_shots(path):
 """ Detects camera shot changes. """
 video_client = videointelligence.VideoIntelligenceServiceClient()
 features = [videointelligence.enums.Feature.SHOT_CHANGE_DETECTION]
 operation = video_client.annotate_video(path, features=features)
 print('\nProcessing video for shot change annotations:')

 result = operation.result(timeout=120)
 print('\nFinished processing.')

 for i, shot in enumerate(result.annotation_results[0].shot_annotations):
 start_time = (shot.start_time_offset.seconds +
 shot.start_time_offset.nanos / 1e9)
 end_time = (shot.end_time_offset.seconds +

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://cloud.google.com/python/setup
https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/videointelligence

1/23/2020 Shot Change Detection Tutorial | Cloud Video Intelligence API Documentation | Google Cloud

https://cloud.google.com/video-intelligence/docs/shot-detection 3/7

video/cloud-client/shotchange/shotchange.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-
client/shotchange/shotchange.py)

ORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/VIDEO/CLOUD-CLIENT/SHOTCHANGE/SHOTCHANGE.PY)

This simple application performs the following tasks:

Imports the libraries necessary to run the application

Takes a video �le stored in Google Cloud Storage URI as an argument and passes it to the
main() function

Gets credentials to run the Video Intelligence API service

Creates a video annotation request to send to the video service

Sends the request and returns a long running operation

Loops over the long running operation until the video is processed and return values are
available

Parses the response for the service and displays it to the user

We'll go over these steps in more detail below.

Impo�ing libraries

 shot.end_time_offset.nanos / 1e9)
 print('\tShot {}: {} to {}'.format(i, start_time, end_time))

if __name__ == '__main__':
 parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter)
 parser.add_argument('path', help='GCS path for shot change detection.')
 args = parser.parse_args()

 analyze_shots(args.path)

import argparse

from google.cloud import videointelligence

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py

1/23/2020 Shot Change Detection Tutorial | Cloud Video Intelligence API Documentation | Google Cloud

https://cloud.google.com/video-intelligence/docs/shot-detection 4/7

video/cloud-client/shotchange/shotchange.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-
client/shotchange/shotchange.py)

ORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/VIDEO/CLOUD-CLIENT/SHOTCHANGE/SHOTCHANGE.PY)

We import argparse to allow the application to accept input �lenames as arguments.

For using the Cloud Video Intelligence API, we also import the
google.cloud.videointelligence library, which holds the directory of our API calls and
enumeration constants.

Running Your application

Here, we parse the passed argument for the Google Cloud Storage URI of the video �lename
and pass it to the main() function.

Authenticating to the API

Before communicating with the Video Intelligence API service, you need to authenticate your
service using previously acquired credentials. Within an application, the simplest way to obtain
credentials is to use Application Default Credentials
 (https://cloud.google.com/video-intelligence/docs/common/auth#adc) (ADC). By default, ADC will
attempt to obtain credentials from the GOOGLE_APPLICATION_CREDENTIALS environment �le,
which should be set to point to your service account's JSON key �le. (You should have set up
your service account and environment to use ADC in the Quickstart
 (https://cloud.google.com/video-intelligence/docs/getting-started). See Setting Up a Service Account
 (https://cloud.google.com/video-intelligence/docs/common/auth#set_up_a_service_account) for more
information.)

parser = argparse.ArgumentParser(
 description=__doc__,
 formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('path', help='GCS path for shot change detection.')
args = parser.parse_args()

analyze_shots(args.path)

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://cloud.google.com/video-intelligence/docs/common/auth#adc
https://cloud.google.com/video-intelligence/docs/getting-started
https://cloud.google.com/video-intelligence/docs/common/auth#set_up_a_service_account

1/23/2020 Shot Change Detection Tutorial | Cloud Video Intelligence API Documentation | Google Cloud

https://cloud.google.com/video-intelligence/docs/shot-detection 5/7

video/cloud-client/shotchange/shotchange.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-
client/shotchange/shotchange.py)

ORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/VIDEO/CLOUD-CLIENT/SHOTCHANGE/SHOTCHANGE.PY)

Constructing the request

Now that our Video Intelligence API service is ready, we can construct a request to that service.
Requests to the Video Intelligence API are provided as JSON objects. See the Video Intelligence
API Reference (https://cloud.google.com/video-intelligence/docs/reference/rest) for complete
information on the speci�c structure of such a request.

This code snippet performs the following tasks:

1. Constructs the JSON for a POST request to the annotate_video() method.

2. Injects the Google Cloud Storage location of our passed video �lename into the request.

3. Indicates that the annotate method should perform a SHOT_CHANGE_DETECTION.

Constructing the Long Running operation

When we �rst execute a request against the Video Intelligence API, we do not get an immediate
result; instead we get an operation name, stored within the response's name �eld, which we can
then use to check for results at a later time.

Passing that operation's name (which is a numerical string) to the Video Intelligence API's
Operations Service operations method returns the current state of the operation. A sample
response is shown below:

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.enums.Feature.SHOT_CHANGE_DETECTION]
operation = video_client.annotate_video(path, features=features)

 

{
 "response":{
 "@type":"type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoRe
 },
 "name":"us-west1.17159971042783089144",
 "metadata":{



https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://cloud.google.com/video-intelligence/docs/reference/rest

1/23/2020 Shot Change Detection Tutorial | Cloud Video Intelligence API Documentation | Google Cloud

https://cloud.google.com/video-intelligence/docs/shot-detection 6/7

video/cloud-client/shotchange/shotchange.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-
client/shotchange/shotchange.py)

ORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/VIDEO/CLOUD-CLIENT/SHOTCHANGE/SHOTCHANGE.PY)

video/cloud-client/shotchange/shotchange.py
 (https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-
client/shotchange/shotchange.py)

ORM/PYTHON-DOCS-SAMPLES/BLOB/MASTER/VIDEO/CLOUD-CLIENT/SHOTCHANGE/SHOTCHANGE.PY)

Note that the response �eld at this time only contains an @type �eld, denoting the type of that
response. Once results are actually available, the response �eld will contain results of that type.

Checking the operation

Using the existing operation request for our existing operation, we construct a while loop to
periodically check the state of that operation. Once our operation has indicated that the
operation is done, we break out of the loop and can parse the response.

Parsing the response

 "annotationProgress":[
 {
 "inputUri":"/demomaker/gbikes_dinosaur.mp4",
 "updateTime":"2017-01-27T19:45:54.297807Z",
 "startTime":"2017-01-27T19:45:54.275023Z"
 }
],
 "@type":"type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoPr
 }
}

result = operation.result(timeout=120)
print('\nFinished processing.')

 

for i, shot in enumerate(result.annotation_results[0].shot_annotations):
 start_time = (shot.start_time_offset.seconds +

 

https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py
https://github.com/GoogleCloudPlatform/python-docs-samples/blob/master/video/cloud-client/shotchange/shotchange.py

1/23/2020 Shot Change Detection Tutorial | Cloud Video Intelligence API Documentation | Google Cloud

https://cloud.google.com/video-intelligence/docs/shot-detection 7/7

Once the operation has been completed, the response will contain an AnnotateVideoResponse
 (https://cloud.google.com/video-intelligence/docs/reference/rest/Shared.Types/AnnotateVideoResponse),
which consists of a list of annotationResults, one for each video sent in the request. Because
we sent only one video in the request, we take the �rst shotAnnotations of the result. We walk
through all the 'segments' for the video.

Running our application

To run our application, simply pass it the Google Cloud Storage URI of a video:

Congratulations! You've performed an annotation task using the Video Intelligence API!

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 4, 2019.

 shot.start_time_offset.nanos / 1e9)
 end_time = (shot.end_time_offset.seconds +
 shot.end_time_offset.nanos / 1e9)
 print('\tShot {}: {} to {}'.format(i, start_time, end_time))

$ python shotchange.py gs://demomaker/gbikes_dinosaur.mp4
operationId=us-west1.12468772851081463748
Operation us-west1.12468772851081463748 started: 2017-01-30T01:53:45.981043Z
Processing video for shot change annotations:
Finished processing.
 Shot 0: 0.0 to 5.166666
 Shot 1: 5.233333 to 10.066666
 Shot 2: 10.1 to 28.133333
 Shot 3: 28.166666 to 42.766666



https://cloud.google.com/video-intelligence/docs/reference/rest/Shared.Types/AnnotateVideoResponse
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

