
1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 1/9

Cloud AutoML Vision

Terminology: See the AutoML Vision Edge terminology

 (https://cloud.google.com/vision/automl/docs/terminology) page for a list of terms used in this tutorial.

After creating an AutoML Vision Edge model and exporting it to a Google Cloud Storage bucket
you can use RESTful services with your AutoML Vision Edge models and TF Serving Docker
images.

What you will build

Docker containers can help you deploy edge models easily on different devices. You can run
edge models by calling REST APIs from containers with any language you prefer, with the
added bene�t of not having to install dependencies or �nd proper TensorFlow versions.

In this tutorial, you will have a step-by-step experience of running edge models on devices using
Docker containers.

Speci�cally, this tutorial will walk you through three steps:

1. Getting pre-built containers.

2. Running containers with Edge models to start REST APIs.

3. Making predictions.

Many devices only have CPUs, while some might have GPUs to get faster predictions. So, we
provide tutorials with both pre-built CPU and GPU containers.

Objectives

In this introductory, end-to-end walkthrough you will use code samples to:

1. Get the Docker container.

2. Start REST APIs using Docker containers with edge models.

Edge containers tutorial

https://cloud.google.com/vision/automl/
https://cloud.google.com/vision/automl/docs/terminology


1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 2/9

3. Make predictions to get analyzed results.

Before you begin

To complete this tutorial, you must:

1. Train an exportable Edge model. Follow the Edge device model quickstart
 (https://cloud.google.com/vision/automl/docs/edge-quickstart) to train an Edge model.

2. Export (#export-model) an AutoML Vision Edge model. This model will be served with
containers as REST APIs.

3. Install (#install-docker) Docker. This is the required software to run Docker containers.

4. (Optional) Install (#install-nvidia) NVIDIA docker and driver. This is an optional step if you
have devices with GPUs and would like to get faster predictions.

5. Prepare test images. These images will be sent in requests to get analyzed results.

Details for exporting models and installing necessary software are in the following section.

Expo� AutoML Vision Edge Model

After training an Edge model, you can export it to different devices.

The containers support TensorFlow models (https://www.tensor�ow.org/guide/extend/model_�les),
which are named saved_model.pb on export.

To export a AutoML Vision Edge model for containers, select the Container tab in the UI and
then export the model to ${YOUR_MODEL_PATH} on Google Cloud Storage. This exported
model will be served with containers as REST APIs later.

https://cloud.google.com/vision/automl/docs/edge-quickstart
https://www.tensorflow.org/guide/extend/model_files


1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 3/9

To download the exported model locally, run the following command.

Where:

${YOUR_MODEL_PATH} - The model location on Google Cloud Storage (for example,
gs://my-bucket-vcm/models/edge/ICN4245971651915048908/2020-01-20_01-27-14-

064_tf-saved-model/)

${YOUR_LOCAL_MODEL_PATH} - Your local path where you want to download your model
(for example, /tmp).

Install Docker

Docker  (https://www.docker.com/) is software used for deploying and running applications inside
containers.

Install Docker Community Edition (CE)  (https://docs.docker.com/install/) on your system. You will
use this to serve Edge models as REST APIs.

Install NVIDIA Driver And NVIDIA DOCKER (optional - for GPU only)

gsutil cp ${YOUR_MODEL_PATH} ${YOUR_LOCAL_MODEL_PATH}/saved_model.pb  

https://www.docker.com/
https://docs.docker.com/install/


1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 4/9

Some devices have GPUs to provide faster predictions. The GPU docker container is provided
supporting NVIDIA GPUs.

In order to run GPU containers, you must install the NVIDIA driver
 (https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu-installation) and NVIDIA

Docker  (https://github.com/NVIDIA/nvidia-docker) on your system.

Running model inference using CPU

This section gives step-by-step instructions to run model inferences using CPU containers. You
will use the installed Docker to get and run the CPU container to serve the exported Edge
models as REST APIs, and then send requests of a test image to the REST APIs to get analyzed
results.

Pull the Docker image

First, you will use Docker to get a pre-built CPU container. The pre-built CPU container already
has the whole environment to serve exported Edge models, which does not yet contain any
Edge models.

The pre-built CPU container is stored in Google Container Registry. Before requesting the
container, set an environment variable for the container's location in Google Container Registry:

After setting the environment variable for the Container Registry path, run the following
command line to get the CPU container:

Run the Docker container

After getting the existing container you will run this CPU container to serve Edge model
inferences with REST APIs.

Before starting the CPU container you must set system variables:

export CPU_DOCKER_GCS_PATH=gcr.io/automl-vision-ondevice/gcloud-container-1.12.0:lat 

sudo docker pull ${CPU_DOCKER_GCS_PATH}  

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu-installation
https://github.com/NVIDIA/nvidia-docker


1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 5/9

${CONTAINER_NAME} - A string indicating the container name when it runs, for example
CONTAINER_NAME=automl_high_accuracy_model_cpu.

${PORT} - A number indicating the port in your device to accept REST API calls later, such
as PORT=8501.

Note: Neither ${CONTAINER_NAME} nor ${PORT} should be used or occupied.

After setting the variables, run Docker in command line to serve Edge model inferences with
REST APIs:

After the container is running successfully, the REST APIs are ready for serving at
http://localhost:${PORT}/v1/models/default:predict. The following section details how to
send requests for prediction to this location.

Send a prediction request

Now that the container is running successfully, you can send a prediction request on a test
image to the REST APIs.

The command line request body contains base64-encoded image_bytes and a string key to identify the
given image. See the Base64 encoding (https://cloud.google.com/vision/automl/docs/base64) topic for
more information about image encoding. The format of the request JSON �le is as follows:

/tmp/request.json

sudo docker run --rm --name ${CONTAINER_NAME} -p ${PORT}:8501 -v ${YOUR_MODEL_PATH}: 

COMMAND-LINE PYTHON

{
  "instances":
  [
    {
      "image_bytes":
      {
        "b64": "/9j/7QBEUGhvdG9zaG9...base64-encoded-image-content...fXNWzvDEeYxxxz
      },
      "key": "your-chosen-image-key"
    }

 

https://cloud.google.com/vision/automl/docs/base64


1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 6/9

After you have created a local JSON request �le you can send your prediction request.

Use the following command to send the prediction request:

Response

You should see output similar to the following:

Run Model Inference Using GPU Containers (optional)

This section shows how to run model inferences using GPU containers. This process is very
similar to running model inference using a CPU. The key differences are the GPU container path
and how you start GPU containers.

Pull the Docker image

First, you will use Docker to get a pre-built GPU container. The pre-built GPU container already
has the environment to serve exported Edge models with GPUs, which does not yet contain any
Edge models, or the drivers.

The pre-built CPU container is stored in Google Container Registry. Before requesting the
container, set an environment variable for the container's location in Google Container Registry:

Run the following command line to get the GPU container:

  ]
}

curl -X POST -d  @/tmp/request.json http://localhost:${PORT}/v1/models/default:pred 

{
    "predictions": [
        {
            "labels": ["Good", "Bad"],
            "scores": [0.665018, 0.334982]
        }
    ]
}

 

export GPU_DOCKER_GCS_PATH=gcr.io/automl-vision-ondevice/gcloud-container-1.12.0-gpu 



1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 7/9

Run the Docker container

This step will run the GPU container to serve Edge model inferences with REST APIs. You must
install NVIDIA driver and docker as mentioned above. You also must must set the following
system variables:

${CONTAINER_NAME} - A string indicating the container name when it runs, for example
CONTAINER_NAME=automl_high_accuracy_model_gpu.

${PORT} - A number indicating the port in your device to accept REST API calls later, such
as PORT=8502.

Note: Neither ${CONTAINER_NAME} nor ${PORT} should be used or occupied.

After setting the variables, run Docker in command line to serve Edge model inferences with
REST APIs:

After the container is running successfully, the REST APIs are ready for serving in
http://localhost:${PORT}/v1/models/default:predict. The following section details how to
send requests for prediction to this location.

Send a prediction request

Now that the container is running successfully, you can send a prediction request on a test
image to the REST APIs.

The command line request body contains base64-encoded image_bytes and a string key to identify the
given image. See the Base64 encoding (https://cloud.google.com/vision/automl/docs/base64) topic for
more information about image encoding. The format of the request JSON �le is as follows:

/tmp/request.json

sudo docker pull ${GPU_DOCKER_GCS_PATH}  

sudo docker run --runtime=nvidia --rm --name "${CONTAINER_NAME}" -v \
${YOUR_MODEL_PATH}:/tmp/mounted_model/0001 -p \
${PORT}:8501 -t ${GPU_DOCKER_GCS_PATH}

 

COMMAND-LINE PYTHON

https://cloud.google.com/vision/automl/docs/base64


1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 8/9

After you have created a local JSON request �le you can send your prediction request.

Use the following command to send the prediction request:

Response

You should see output similar to the following:

Summary

In this tutorial, you have walked through running Edge models using CPU or GPU Docker
containers. You can now deploy this container based solution on more devices.

What Next

{
  "instances":
  [
    {
      "image_bytes":
      {
        "b64": "/9j/7QBEUGhvdG9zaG9...base64-encoded-image-content...fXNWzvDEeYxxxz
      },
      "key": "your-chosen-image-key"
    }
  ]
}

 

curl -X POST -d  @/tmp/request.json http://localhost:${PORT}/v1/models/default:pred 

{
    "predictions": [
        {
            "labels": ["Good", "Bad"],
            "scores": [0.665018, 0.334982]
        }
    ]
}

 



1/23/2020 Edge containers tutorial  |  Cloud AutoML Vision  |  Google Cloud

https://cloud.google.com/vision/automl/docs/containers-gcs-tutorial 9/9

Learn more about TensorFlow generally with TensorFlow's Getting Started
 (https://www.tensor�ow.org/tutorials) documentation.

Learn more about Tensor�ow Serving (https://www.tensor�ow.org/tfx/serving/docker).

Learn how to use TensorFlow Serving with Kubernetes
 (https://www.tensor�ow.org/tfx/serving/serving_kubernetes).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated November 20, 2019.

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/tfx/serving/docker
https://www.tensorflow.org/tfx/serving/serving_kubernetes
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

