Evaluating models

After training a model, AutoML Vision uses items from the TEST set

(https://cloud.google.com/vision/automl/docs/prepare#training_vs_evaluation_datasets) to evaluate the quality and accuracy of the new model.

Evaluation overview

AutoML Vision provides an aggregate set of evaluation metrics indicating how well the model performs overall, as well as evaluation metrics for each category label, indicating how well the model performs for that label.

• AuPRC : Area under Precision/Recall curve

(https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision), also referred to as "average precision." Generally between 0.5 and 1.0. Higher values indicate more accurate models.

- The **Confidence threshold curves** show how different confidence thresholds would affect precision, recall, true and false positive rates. Read about the relationship of <u>precision and</u> <u>recall</u> (https://en.wikipedia.org/wiki/Precision_and_recall).
- **Confusion matrix**: Only present for single-label-per-image models. Represents the percentage of times each label was predicted for each label in the training set during evaluation.

Confusion matrix

This table shows how often the model classified each label correctly (in blue), and which labels were most often confused for that label (in orange).

	Predicted labe	ses rul	111 ⁵ 8 ¹	ndellon de	JSH SU
True label	64c (0	2 11	11 BS	N. 88	51
roses	89.9%	10.1%	-	-	-
tulips	-	97.5%	1.3%	1.3%	-
dandelion	1.0%	-	98.1%	1.0%	-
daisy	-	-	1.7%	98.3%	-
sunflowers	-	-	-	-	100.0%

Ideally, label one would be assigned only to images classified as label one, etc, so a perfect matrix would look like:

100	0	0	0
0	100	0	0
0	0	100	0
0	0	0	100

In the example above, if an image was classified as **one** but the model predicted **two**, the first row would instead look like:

99	1	0	0		• [
----	---	---	---	--	-----	--

More information can be found by searching for <u>'confusion matrix machine learning'</u> (https://www.google.com/search?q=confusion+matrix+machine+learning).

AutoML Vision creates the confusion matrix for up to 10 labels. If you have more than 10 labels, the matrix includes the 10 labels with the most confusion (incorrect predictions).

Use this data to evaluate your model's readiness. High confusion, low AUC scores, or low precision and recall scores can indicate that your model needs additional training data or has inconsistent labels. A very high AUC score and perfect precision and recall can indicate that the data is too easy and may not generalize well.

List model evaluations

Once you have trained a model, you can list evaluation metrics for that model.

Get model evaluation values

You can also get a specific model evaluation for a label (displayName) using an evaluation ID.

WEB UI INTEGRATED UI

Note: Starting September 2019 we will start migrating AutoML Vision users to a new user interface that may affect the steps in this operation. This migration will occur in an on-going basis. See the "**Integrated UI**" tab for instructions using the updated interface.

1. Open the <u>AutoML Vision UI</u> (https://console.cloud.google.com/vision) and click the lightbulb icon in the left navigation bar to display the available models.

To view the models for a different project, select the project from the drop-down list in the upper right of the title bar.

- 2. Click the row for the model you want to evaluate.
- 3. If necessary, click the **Evaluate** tab just below the title bar.

If training has been completed for the model, AutoML Vision shows its evaluation metrics.

♦	AutoML Vision	Flowers	+ ADD IMAGES +	II, LABEL STATS	EXPORT DATA		dadatang •
:=	IMAGES TRAIN	EVALUATE	PREDICT				
Ŷ	Model						
	Flowers_v2018070220555	7	\sim				
	Created	Analyz	ed	Avg preci	sion 💿 🛛 🥢 Precision 💿	Recall 💿	
	Jul 02, 2018 1 compute hour	3667	images s, 333 test images	0.997	97.9%	97.5%	
	Precision and recall are base	d on a score three	hold of 0.5				
	Type to filter labels						
	All labels		All labels				
	daisy		Score threshold ① - Total images 3	667	.50		
	dandelion roses			7.9%			
	sunflowers			7.5%			
	tulips		Use the slider to see which your model on the precision		it for		
			1.00		1.00	0 1.00 0	
			0.75		0.75	0.75	
			8 0.50		1000 0.50		
			د 0.25		0.25	0.25	
			0.00		0.00	0.00	
			0.0 0.2 0.4	0.6 0.8 1.0	0.0 0.2 0.4 0.6 0.8	1.0 0.0 0.2 0.4 0.8 0.8 1.0	
			,	Becall	Score threshold	Score threshold	
			Confusion matri				
			This table shows how often	the model classified each	label correctly (in blue), and which labels were r	most often confused for that label (in orange).	
					and and an an and and		
			True label	~	redict cases with anticar but	Bandadar	
			roses		95.8% 4.2%		
			tulips		- 100.0%		

4. To view the metrics for a specific label, select the label name from the list of labels in the lower part of the page.

Model	-						
cloud_model		▼ Confidence	e threshold ———	0.5			
➡ Filter labels	:						
All labels		roses				100	79/
daisy					00%	گر	
		Total images Test items	3,29	99			
dandelion		Precision 🔞	93.	55% Log			
		Recall @	90.	63%			
roses						_	
		Use the slider to see which	confidence threshold works	best for your		c	0%
sunflowers		model on the precision-rec Learn more about these m			0%	100%	0.0 1 Confidence
					Recall		- Recall Precision
tulips		All test images are evalu training, these results wi		If you modify your dataset afte	r		
		True positives					
		Your model correctly pre	dicted roses on these image	es			
			16		Ter and the second s	10.000	
		Part				1 3 C	Athle Bases & At
		ROSES			A 990		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Prese		Jun ADD W
				The same of the	A		A Rest Providence
		Score: 0.57167983	Score: 0.8095671	Score: 0.9303203	Score: 0.95381385	Score: 0.9647706	Score: 0.9732198
		00010.0.07107900	00010.0.0090071	00010.0.9000200	00010. 0.90001000	00010.0.9047700	1 - 6 of many

True Positives, False Negatives, and False Positives (UI only)

Note: This functionality is only available in the user interface (UI).

In the user interface you can observe specific examples of model performance, namely **true positive (TP)**, **false negative (FN)**, and **false positive (FP)** instances from your TRAINING and VALIDATION sets.

WEB UI

You can access the TP, FN, and FP view in the UI by selecting the **Evaluate** tab, and then selecting any specific label.

By viewing trends in these predictions, you can modify your training set to improve model performance.

True positive images are sample images provided to the trained model that the model correctly annotated:

False negative images are similarly provided to the trained model, but the model failed to correctly annotate the image for the given label:

False negatives

Your model should have predicted roses on these images

Lastly, *false positive* images are those provided to the trained model that *were* annotated with the given label, but *should not* have been annotated:

False positives

Your model incorrectly predicted roses on these images

Score: 0.59571296

Score: 0.74452376

Score: 0.957296

The model is selecting interesting corner cases, which presents an opportunity to refine your definitions and labels to help the model understand your label interpretations. For example, a stricter definition would help the model understand if you consider an abstract painting of a rose a "rose" (or not).

With repeated label, train, and evaluate loops your model will surface other such ambiguities in your data.

You can also adjust the score threshold in this view in the user interface, and the TP, FN, and FP images displayed will reflect the threshold change:

	nreshold	0.84					
oses							
			100%		100%		•
lotal images	3,299			4	ſ		
est items	0		_				
Precision 🕜	96.55%	6	Precision				
Recall 🕜	87.5%		Pre				
nodel on the precision-recall t learn more about these metric	cs and graphs.	t for your		100% Recall	0%	Confidence Recall — Precis	1.0
	<u>cs and graphs.</u> d at the time of training. If y		0% R		0.0		
Learn more about these metric	<u>cs and graphs.</u> d at the time of training. If y		0% R		0.0		
earn more about these metric All test images are evaluated raining, these results will no	<u>es and graphs.</u> d at the time of training. If y t be accurate.		0% R		0.0		
earn more about these metric All test images are evaluated raining, these results will no Frue positives	<u>es and graphs.</u> d at the time of training. If y t be accurate.		0% R		0.0		
earn more about these metric Il test images are evaluated aining, these results will no True positives	<u>es and graphs.</u> d at the time of training. If y t be accurate.		0% R	Recall	0.0		

Iterate on your model

If you're not happy with the quality levels, you can go back to earlier steps to improve the quality:

- AutoML Vision allows you to sort the images by how "confused" the model is, by the true label and its predicted label. Look through these images and make sure they're labeled correctly.
- Consider adding more images to any labels with low quality.

- You may need to add different types of images (e.g. wider angle, higher or lower resolution, different points of view).
- Consider removing labels altogether if you don't have enough training images.
- Remember that machines can't read your label name; it's just a random string of letters to them. If you have one label that says "door" and another that says "door_with_knob" the machine has no way of figuring out the nuance other than the images you provide it.
- Augment your data with more examples of true positives and negatives. Especially important examples are the ones that are close to the decision boundary (i.e. likely to produce confusion, but still correctly labeled).
- Specify your own TRAIN, TEST, VALIDATION split. The tool randomly assigns images, but near-duplicates may end up in TRAIN and VALIDATION which could lead to overfitting and then poor performance on the TEST set.

Once you've made changes, train and evaluate a new model until you reach a high enough quality level.

Except as otherwise noted, the content of this page is licensed under the <u>Creative Commons Attribution 4.0 License</u> (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the <u>Apache 2.0 License</u> (https://www.apache.org/licenses/LICENSE-2.0). For details, see our <u>Site Policies</u> (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated January 22, 2020.