
1/23/2020 Preparing your training data | Cloud AutoML Vision Object Detection | Google Cloud

https://cloud.google.com/vision/automl/object-detection/docs/prepare 1/7



Cloud AutoML Vision Object Detection

Preparing your images

General image requirements

Supported �le
types

JPEG

PNG

GIF

BMP

ICO

Types of
images

AutoML Vision Object Detection models are optimized for photographs of objects in the real
world.

Note: AutoML Vision Object Detection does not currently satisfy the requirements to be
considered compliant with the Health Insurance Portability and Accountability Act (HIPAA).

Training image
�le size (MB)

30MB maximum size.

Prediction
image �le* size
(MB)

1.5MB maximum size.

Image size
(pixels)

1024 pixels by 1024 pixels suggested maximum.

For images much larger than 1024 pixels by 1024 pixels some image quality may be lost
during AutoML Vision Object Detection's image normalization process.

* Note: The AutoML API currently only supports sending base64-encoded image content to the predict

method. For an example, see Make a prediction

 (https://cloud.google.com/vision/automl/object-detection/docs/predict). For general information on

encoding an image, see the base64 encode

 (https://cloud.google.com/vision/automl/object-detection/docs/base64) how-to topic.

Preparing your training data

https://cloud.google.com/vision/automl/object-detection/docs/
https://cloud.google.com/vision/automl/object-detection/docs/predict
https://cloud.google.com/vision/automl/object-detection/docs/base64

1/23/2020 Preparing your training data | Cloud AutoML Vision Object Detection | Google Cloud

https://cloud.google.com/vision/automl/object-detection/docs/prepare 2/7

Training data and dataset requirements

Training image
characteristics

The training data should be as close as possible to the data on which predictions are to be
made.

For example, if your use case involves blurry and low-resolution images (such as from a
security camera), your training data should be composed of blurry, low-resolution images. In

Labels and bounding box requirements

Label
instances for
training

10 annotations (instances) minimum.

Annotation
requirements

For each label you must have at least 10 images, each with at least one annotation (bounding bo

However, for model training purposes it's recommended you use about 100 annotations per labe
have the better your model will perform.

Label ratio
(most
common
label to least
common
label):

The model works best when there are at most 100x more images for the most common label tha

For model performance, it is recommended that you remove very low frequency labels.

Bounding
box edge
length

At least 0.01 * length of a side of an image. For example, a 1000 * 900 pixel image would require

Bounding
box size
(pixels)

8 pixels by 8 pixels minimum.

Bounding
boxes per
distinct
image

500 maximum.

Bounding
boxes
returned
from a
prediction
request

100 (default), 500 maximum.

You can specify this value as part of the predict request in the params.max_bounding_box_c
 (https://cloud.google.com/automl/docs/reference/rest/v1/projects.locations.models/predict#

https://cloud.google.com/automl/docs/reference/rest/v1/projects.locations.models/predict#request-body

1/23/2020 Preparing your training data | Cloud AutoML Vision Object Detection | Google Cloud

https://cloud.google.com/vision/automl/object-detection/docs/prepare 3/7

general, you should also consider providing multiple angles, resolutions, and backgrounds for
your training images.

AutoML Vision Object Detection models can't generally predict labels that humans can't
assign. So, if a human can't be trained to assign labels by looking at the image for 1-2
seconds, the model likely can't be trained to do it either.

Images in each
dataset

150,000 maximum

Total
annotated
bounding
boxes in each
dataset

1,000,000 maximum

Number of
labels in each
dataset

1 minimum, 1,000 maximum

Best practice guide

What kind of image data can you use?

Supported image �le formats: JPEG, PNG, GIF, BMP, or ICO.

The training data should be as close as possible to the data on which predictions are to
be made. For example, if your use case involves low-resolution images from cellphone
cameras, your training data should be composed of low-resolution images. In general, you
should also consider providing multiple angles, resolutions, and backgrounds for your
training images. Another example is if you want to detect regions in high resolution
images, do not train the model with cropped images.

What are the minimal conditions on data?

The labels you use must be valid strings (no comma inside). The comma is only an issue
in CSV-based importing. A way to address this issue is:
"file_comma,path","label,comma",0,0,,,1,1,,.

The bounding boxes should be larger than 8 by 8 pixels in all cases. Bounding boxes that
are smaller than this will be �ltered.

1/23/2020 Preparing your training data | Cloud AutoML Vision Object Detection | Google Cloud

https://cloud.google.com/vision/automl/object-detection/docs/prepare 4/7

Images may exceed 1024*1024 pixels, but those images will be downscaled
automatically, possibly leading to a loss in image quality. For this reason we recommend
a maximum image size of 1024*1024 pixels. Images smaller than these dimensions will
not be upscaled.

All the bounding boxes should be inside images.

The bounding boxes should be exhaustively labeled: if there are two cars in an image, all
of them should be labeled.

How big does the dataset need to be?

The more, the better. This is almost always true. However, an exception to this would be if
adding more samples leads to imbalance or leakage (see below (#common-issues)).

The amount of data needed to train a good model depends on different factors:

The amount of classes. The more unique classes you have, the more samples per
class are needed.

Complexity/diversity of classes. It's similar to humans: A human can probably
quickly learn to distinguish between beer and wine, with just a few samples. He will
have to try different wines quite more often to distinguish between 5-6 different
sorts of red wines, and for many humans it will be challenging to learn to
distinguish between 50 different �avors of red wines. At least one will have to
practice a lot. Similarly, neural networks would quickly be able to distinguish
between elephants and cats, but they would need many more samples to classify
30 different animals.

As a rule of thumb, we recommend to have at least 100 training samples per class if you
have distinctive and few classes, and more than 200 training samples if the classes are
more nuanced and you have more than 50 different classes.

Training vs. evaluation datasets

When training machine learning models you typically divide the dataset usually into three
separate datasets:

1. a training dataset

2. a validation dataset

1/23/2020 Preparing your training data | Cloud AutoML Vision Object Detection | Google Cloud

https://cloud.google.com/vision/automl/object-detection/docs/prepare 5/7

3. a test dataset

Test, train, and validation sets are often conceptually referred to as "dataset splits".

A training dataset is used to build a model. The model being trained tries multiple hyper-
parameters while searching for patterns in the training data. During the process of pattern
identi�cation, AutoML Vision Object Detection uses the validation dataset to test the
hyperparameters of the model. AutoML Vision Object Detection chooses the best-performing
algorithms and patterns from all options identi�ed during the training stage.

After the best performing algorithms and patterns have been identi�ed they are tested for error
rate, quality, and accuracy using the test dataset. Customers must have a separate test dataset
that they can use to test the model independently. This test dataset is either speci�ed in the
training set by the user or chosen automatically at training time.

Both a validation and a test dataset are used in order to avoid bias in the model. During the
validation stage, optimal model parameters are used. Using these optimal model parameters
can result in biased metrics. Using the test dataset to assess the quality of the model after the
validation stage provides the training process with an unbiased assessment of the quality of
the model.

If you manually choose dataset samples, you should structure datasets in a way that
represents the same population. Similarly, you should create dataset splits that have similar
images, all with a similar distribution of labels.

Manual and automatic dataset splits

You can manually specify (https://cloud.google.com/vision/automl/object-detection/docs/csv-format)

the split of training, validation, and test when importing datasets in a CSV �le.

If you do not specify it, AutoML Vision Object Detection will randomly split your data. Splits are
created in the following manner:

80% of images are used for training.

10% of images are used for hyper-parameter tuning and/or to decide when to stop
training.

10% of images are used for evaluating the model. These images are not used in training.

https://cloud.google.com/vision/automl/object-detection/docs/csv-format

1/23/2020 Preparing your training data | Cloud AutoML Vision Object Detection | Google Cloud

https://cloud.google.com/vision/automl/object-detection/docs/prepare 6/7

The maximum size of a test dataset is 50,000 images, even if 10% of the total dataset exceeds that

maximum.

Common issues

Imbalanced data: In many cases the number of samples per class (label) is not equal.
Minor imbalances don't generally create issues, but larger discrepancies between classes
can cause an issue. When there is a bigger imbalance, eg. some classes are represented
more than 10 times that of other classes, this becomes problematic for model building.
While there are approaches to counteract class imbalances, it's not an ideal con�guration
for model training. When possible, try to avoid model training with highly imbalanced
data.

As a general rule, keep the ratio between the most common and the least common
classes below 2 to 1.

Bad splits: When you provide training data, AutoML Vision Object Detection can
automatically split it into training, validation, and testing datasets. You can also assign
the train split labels yourself as well.

There is no guarantee that you will get the same split if you import the same data multiple
times.

The training, validation and testing data should not have strong correlation. For example,
a common bad case is that when the images are from videos, leading many images to be
very similar to each other. If you let the system randomly split the dataset for you it will be
very likely that you will get highly similar images in both training and validation/testing
data. This will lead to an incorrectly obtained high accuracy on testing data.

Data leakage: Data leakage is a signi�cant problem that can bias models. Data leakage
happens when the algorithm is able to use information during model training that it
should not, and that will not be available during future predictions. It leads to overly
optimistic results on train, validation, and potentially test datasets. However, this
performance might not be as good on some future unseen data. This happens often
unintentionally, and requires special care during data preparation.

Leakage examples: Positives and negatives from different image sources, or viewing
angles.

1/23/2020 Preparing your training data | Cloud AutoML Vision Object Detection | Google Cloud

https://cloud.google.com/vision/automl/object-detection/docs/prepare 7/7

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
 (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
 (https://www.apache.org/licenses/LICENSE-2.0). For details, see our Site Policies
 (https://developers.google.com/terms/site-policies). Java is a registered trademark of Oracle and/or its a�liates.

Last updated December 5, 2019.

https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/terms/site-policies

