
1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 1/11

This page provides an overview of multiple network interfaces in a virtual machine (VM) instance,
including how they work and sample con�gurations. For information about creating con�gurations
that use multiple interfaces, see Creating multiple network interfaces
 (/vpc/docs/create-use-multiple-interfaces).

Google Cloud Virtual Private Cloud (VPC) networks are by default isolated private networking
domains. Networks have a global scope (/compute/docs/regions-zones/global-regional-zonal-resources)

and contain regional subnets. VM instances within a VPC network can communicate among
themselves via internal IP addresses as long as �rewall rules permit. However, no internal IP address
communication is allowed between networks, unless you set up mechanisms such as VPC Network
Peering (/vpc/docs/vpc-peering) or Cloud VPN (/vpn/docs).

Every instance in a VPC network has a default network interface. You can create additional network
interfaces attached to your VMs. Multiple network interfaces enable you to create con�gurations in
which an instance connects directly to several VPC networks. Each of the interfaces must have an
internal IP address, and each interface can also have an external IP address. Each instance can have
up to 8 interfaces, depending on the instance's type. For more information, see Maximum number of
interfaces (/vpc/docs/create-use-multiple-interfaces#max-interfaces).

Typically, you might require multiple interfaces if you wish to con�gure an instance as a network
appliance that does load balancing, Intrusion Detection and Prevention (IDS/IPS), Web Application
Firewall (WAF), or WAN optimization between networks. Multiple network interfaces are also useful
when applications running in an instance require tra�c separation, such as separation of data plane
tra�c from management plane tra�c.

Use multiple network interfaces when an individual instance needs access to more than one VPC
network, but you don't want to connect both networks directly.

Network and security function: Multiple network interfaces enable virtualized network
appliance functions such as load balancers, network address translation (NAT) servers, and

https://cloud.google.com/vpc/docs/create-use-multiple-interfaces
https://cloud.google.com/compute/docs/regions-zones/global-regional-zonal-resources
https://cloud.google.com/vpc/docs/vpc-peering
https://cloud.google.com/vpn/docs
https://cloud.google.com/vpc/docs/create-use-multiple-interfaces#max-interfaces

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 2/11

proxy servers that are con�gured with multiple network interfaces. See Example 1: Networking
and security virtual appliances (#con�g-appliances) for more details.

Perimeter and DMZ isolation: An important best practice in tiered networking architectures is to
isolate public-facing services from an internal network and its services. Use multiple network
interfaces to create con�gurations where there are separate network interfaces on the instance,
one of them accepting public-facing tra�c and another handling back-end private tra�c that
has more restrictive access controls.

Any resources that can be reached from the Internet should be separated from your internal
network and its services. This drastically limits the scope and damage that a security breach
can cause. For example, you can place a second network interface on each web server that
connects to a mid-tier network where an application server resides. The application server can
also be dual-homed to a back-end network where the database server resides. Each dual-homed
instance receives and processes requests on the front end, initiates a connection to the back
end, and then sends requests to the servers on the back-end network.

By con�guring separate interfaces, one public-facing and another private- facing, you can apply
separate �rewall rules and access controls to each interface separately and enforce security
functions in communications from the public to private domain. For more information, see
Example 2: Using third-party appliances in a Shared VPC network scenario (#third-party).

This section examines several common examples of how to use multiple network interfaces.

Networking and security virtual appliances, such as WAF, security application- level �rewalls, and
WAN accelerators, are usually con�gured with multiple virtual interfaces. Each of the multiple
interfaces is con�gured with its own private IP address and optionally with its own public IP address.

The following �gure describes a typical setup. In this speci�c case, you con�gure a virtual network
appliance on the path from public to private connectivity. In this way, tra�c can only reach a private
VPC network from a public external client through an application-level virtualized �rewall
enforcement point. This application-level �rewall is enforced on top of virtual machines.

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 3/11

Project

public-network

subnet1
10.129.0.0/16

management-network

private-network

subnet0
10.128.0.0/16VM appliance

Running firewall
software

nic1

nic0

nic2

Corp. VPN
subnet2

10.130.0.0/16

Corporate

External Client

Internet

VM

 (/vpc/images/multinic/multinic1.svg)

Use case 1: Provisioning and con�guring instances with multiple interfaces (click to enlarge)

The following assumes that subnet0, subnet1, and subnet2 already exist, with non-overlapping
ranges. To con�gure VM-appliance in this example, use the following command.

https://cloud.google.com/vpc/images/multinic/multinic1.svg

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 4/11

This command creates an instance with three network interfaces:

nic0 is attached to subnet0 and has no public IP address

nic1 is attached to subnet1 and has an ephemeral public IP address

nic2 is attached to subnet2 and has no public IP address

This setup is useful when you want to share a single set of centralized third-party appliances for
workloads or applications that are hosted in different projects. In the example shown below, there are
four distinct applications, App1, App2, App3 and App4, that are hosted in different service projects.
You need them to be protected for all Internet ingress and you need egress tra�c to be inspected and
�ltered in a third-party appliance that is centrally located in the Shared VPC host project.

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 5/11

shared-vpc-host-project

network-dmz

service-
project-4

service-
project-3

service-
project-2

service-
project-1

Internet

vm
(app1)

vm
(app2)

vm
(app3)

vm
(app4)

nic0

nic1 nic2 nic3 nic4

Public VIP

nic0 nic0 nic0 nic0

External Client

subnet-dmz
10.0.0.0/24

vm-appliance

subnet-2
10.0.2.0/24

subnet-3
10.0.3.0/24

subnet-1
10.0.1.0/24

subnet-4
10.0.4.0/24

 (/vpc/images/multinic/multinic3.svg)

Use case 2: Shared VPC example with a third-party appliance (click to enlarge)

To create the VM and network interfaces in this example, use the following commands.

To create VM-appliance:

https://cloud.google.com/vpc/images/multinic/multinic3.svg

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 6/11

This creates an instance with �ve network interfaces:

nic0 is attached to subnet-dmz, which is part of network-dmz, with a static address 'reserved-
address'

nic1 is attached to subnet-1, which is part of network-1, with no public IP

nic2 is attached to subnet-2, which is part of network-2, with no public IP

nic3 is attached to subnet-3, which is part of network-3, with no public IP

nic4 is attached to subnet-4, which is part of network-4, with no public IP

Shared VPC (/vpc/docs/shared-vpc) enables you to share VPC networks across projects in your Cloud
Organization.

Shared VPC allows you to create instances associated with a Shared VPC network that is hosted in a
centralized Shared VPC host project. See Provisioning Shared VPC (/vpc/docs/provisioning-shared-vpc)

for full information on con�guring Shared VPC networks.

When you create instances with multiple network interfaces, your instances or instance templates
can have certain interfaces attached to subnets local to the project, while other interfaces can be
attached to Shared VPC networks.

To create instances with one or more interfaces associated with Shared VPC networks, you must
have the compute.networkUser role in the Shared VPC host project.

https://cloud.google.com/vpc/docs/shared-vpc
https://cloud.google.com/vpc/docs/provisioning-shared-vpc

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 7/11

When an internal DNS query is made with the instance hostname, it resolves to the primary interface
(nic0) of the instance. If the nic0 interface of the instance belongs to a VPC network different from
the VPC network of the instance issuing the internal DNS query, the query will fail.

Private Compute Engine DNS records will not be generated per interface.

In a default multiple interface con�guration, the OS is con�gured to use DHCP. The DHCP and ARP
behavior of each of the multiple interfaces is the same as the DHCP and ARP in an instance with a
single interface.

In a multiple interface instance that uses DHCP, every interface gets a route for the subnet that it is in.
In addition, the instance gets a single default route that is associated with the primary interface eth0.
Unless manually con�gured otherwise, any tra�c leaving an instance for any destination other than
a directly connected subnet will leave the instance via the default route on eth0.

In this sample, the primary interface eth0 gets the default route (default via 10.138.0.1 dev eth0),
and both interfaces eth0 and eth1 get routes for their respective subnets.

For more information, read Con�guring Policy Routing
 (/vpc/docs/create-use-multiple-interfaces#con�guring_policy_routing).

When a VM instance has multiple interfaces and a network tag (/vpc/docs/add-remove-network-tags),
the network tag might not impact all of the VM's interfaces. A VM's network tag impacts an interface
if the interface is in a VPC network that contains a custom static route (/vpc/docs/routes#static_routes)

with a matching tag.

For example:

https://cloud.google.com/vpc/docs/create-use-multiple-interfaces#configuring_policy_routing
https://cloud.google.com/vpc/docs/add-remove-network-tags
https://cloud.google.com/vpc/docs/routes#static_routes

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 8/11

1. A VM has two interfaces: nic0 and nic1. The nic0 interface is in vpc-net-a. The nic1 interface
is in vpc-net-b. The VM has a network tag called vpn-ok. The tag is an attribute on the
instance, not on a speci�c interface.

2. The vpc-net-a network has a custom static route with a tag called vpn-ok.

3. The vpc-net-b network has a custom static route with a tag called vpn-123.

These numbered steps correspond to the number callouts in the following diagram:

vpc-net-a

other routes

vpc-net-b

other routes

nic0

subnet-a-1

Primary IP range:
10.1.0.0/24

subnet-b-1

Primary IP range:
10.2.0.0/24

1

- Destination: 10.168.1.0/24
- Next-hop: vpn-tunnel-123
-Tags: vpn-123

Custom
Static route

- Destination: 10.168.1.0/24
- Next-hop: vpn-tunnel-456
-Tags: vpn-ok

Custom
Static route

2 3

Network tag:
vpn-ok

VM instance

nic1

 (/vpc/images/network-tags-multiple-interfaces.svg)

Custom Static Routes and Mltiple Network Interfaces (click to enlarge)

In the case of the vpc-net-a network, because it has a route with a tag in common with the VM, the
VM's vpn-ok tag applies to the VM's nic0 interface in vpc-net-a. In contrast, because the vpc-net-b
doesn't have a static route with the vpn-ok tag, the VM's vpn-ok network tag is ignored on the VM's
nic1 interface.

https://cloud.google.com/vpc/images/network-tags-multiple-interfaces.svg

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 9/11

If you choose to use tags with routes, note that tags are applied at the instance level and, as such,
tags apply to all interfaces of a virtual machine instance. If this is not desireable, you set up your
con�guration so that only certain tags are used in routes in a given VPC network, effectively ensuring
those tags only apply to the interfaces associated with the speci�c VPC network.

Except for Internal TCP/UDP Load Balancing (/load-balancing/docs/internal/), all Google Cloud load
balancers only distribute tra�c to the �rst interface (nic0) of a backend instance.

Each VPC network has its own set of �rewall rules. If an instance's interface is in a particular VPC
network, that network's �rewall rules apply to that interface.

For example, suppose a VM instance has two interfaces:

nic0 in VPC network network-1

nic1 in VPC network network-2

Firewall rules that you create for the network-1 network apply to nic0. Firewall rules that you create
for the network-2 network apply to nic1.

See to the �rewall rules overview (/vpc/docs/�rewalls) for more information.

Ingress �rewall rules can use either network tags or service accounts to identify sources, targets
(destinations), or both.

Egress �rewall rules can use either network tags or service accounts to identify targets
(sources).

See source and target �ltering by service account (/vpc/docs/�rewalls#serviceaccounts) for more
information.

Network tags and service accounts identify instances, not speci�c interfaces. Keep in mind that
�rewall rules are associated with a single VPC network and each interface of a multi-NIC instance
must be in a unique VPC network.

https://cloud.google.com/load-balancing/docs/internal/
https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/firewalls#serviceaccounts

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 10/11

The following example demonstrates how you can effectively use source tags for ingress allow
�rewall rules. The vm1 instance has two network interfaces:

nic0 in network-1

nic1 in network-2

Suppose you need to allow the following tra�c from vm1:

SSH tra�c from vm1 to any instance in network-1

HTTP and HTTPS tra�c from vm1 to any instance in network-2

To accomplish this, you can do the following:

1. Assign two network tags (/vpc/docs/add-remove-network-tags#adding_new_tags_to_vm_instances) to
vm1: vm1-network1 and vm1-network2

2. Create (/vpc/docs/using-�rewalls#creating_�rewall_rules) an ingress allow �rewall rule in network-1
with the following components (/vpc/docs/�rewalls#gcp_�rewall_rule_summary_table) to allow SSH
tra�c from vm1 to all VMs in network-1:

Action: allow

Direction: ingress

Sources: VMs with tag vm1-network1

Targets: All instances in the VPC network

Protocols and ports: tcp:22

3. Create an ingress allow �rewall rule in network-2 with the following components to allow HTTP
and HTTPS tra�c from vm1 to all VMs in network-2:

Action: allow

Direction: ingress

Sources: VMs with tag vm1-network2

Targets: All instances in the VPC network

Protocols and ports: tcp:80,443

The following diagram illustrates this �rewall con�guration example:

https://cloud.google.com/vpc/docs/add-remove-network-tags#adding_new_tags_to_vm_instances
https://cloud.google.com/vpc/docs/using-firewalls#creating_firewall_rules
https://cloud.google.com/vpc/docs/firewalls#gcp_firewall_rule_summary_table

1/25/2020 Multiple network interfaces overview and examples | VPC | Google Cloud

https://cloud.google.com/vpc/docs/multiple-interfaces-concepts/ 11/11

Project

network-1

subnet-1
10.134.0.0/16

vm2 vm3

nic0 IP:
10.134.0.3

nic0 IP:
10.134.0.4

nic0 IP:
10.134.0.2

“allw tcp port 22
source_tags
VM1-network1-foo”

Firewall
Rule 1

Tags:
“vm1-network1-foo”
“vm1-network2-foo”

vm1

“allw tcp port
80,443 source_tags
VM1-network2-foo”

Firewall
Rule 2

nic1 IP:
10.128.0.2

network-2

subnet-2
10.128.0.0/16

vm4 vm5

nic0 IP:
10.128.0.3

nic0 IP:
10.128.0.4

 (/vpc/images/multinic/multinic5.svg)

Firewall rules (click to enlarge)

Read Creating instances with multiple network interfaces (/vpc/docs/create-use-multiple-interfaces).

https://cloud.google.com/vpc/images/multinic/multinic5.svg
https://cloud.google.com/vpc/docs/create-use-multiple-interfaces

